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Abstract

Given a family of model categories E → R over a Reedy category, we outline a set
of conditions which lead to the existence of a Reedy model structure on the category of
sections Sect(R,E). We prove that for a wide class of examples, this model structure
serves as a strictification of the (∞, 1)-category of sections of the higher-categorical family
associated to E→ R.
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Introduction

Let M be a model category. Given a small category C, the associated functor category
Fun(C,M) can be endowed with objectwise weak equivalences: take those natural transforma-
tions X → Y such that for each c ∈ C, the value X(c) → Y (c) is a weak equivalence in M.
For a general [24] choice of M (assuming small (co)limits, see Definition 2.2) and C, there is no
known way to complete the class of objectwise weak equivalences on Fun(C,M) into a model
structure. One option to treat this issue is to assume additional requirements about M, such as
being cofibrantly generated, or further, combinatorial. Another way concerns the assumptions
on C.

The notion of a Reedy category is attributed to [25]. To fix a definition, a Reedy category is a
small category R possessing two subcategories R− ⊂ R ⊃ R+ with ObR− = ObR = ObR+,
and a degree function deg : R→ N taking values in natural numbers, such that

1. the isomorphisms of R are identities,

2. the non-identities of R− lower the value of deg, and the non-identities of R+ raise the
value of deg,

3. any morphism f : x→ y factors uniquely as f = f+ ◦f−, where f− ∈ R− and f+ ∈ R+.

Many elementary diagram categories are naturally Reedy: for example, the two-arrow category
a←− b −→ c appearing in the calculus of pullbacks, can be endowed with at least two Reedy
structures; in the first one, both maps raise the degree, in the other, both maps lower the degree.
Similarly, the category

[n] = 0 −→ ... −→ n

admits two different Reedy structures: for the first structure, deg(0) = 0 and all maps advance
the degree, for the second, deg(0) = n and all maps lower the degree. Taking all [n] for n ∈ N
defines a full subcategory ∆ ⊂ Cat of the category of small categories. The surjections, the
injections and deg([n]) = n make ∆ (and ∆op) into a Reedy category. Furthermore, for any
category C, denote by ∆C the category of functors c : [n] → C, with morphisms c → c′ given
by functors [n]→ [m] in the overcategory Cat/C. The Reedy structure on ∆ induces a Reedy
structure on ∆C [8, 22.10]. This example shows that Reedy categories exist in a great variety.

The classical result (see e.g. [17]) asserts that given a Reedy category R and a model category
M, there exists an explicitly-constructed model structure on Fun(R,M), with objectwise weak
equivalences. The existence of a model structure on functors from a Reedy category permits
the computation of various homotopy limits, even for a general category C: the assignment

(c : [n]→ C) 7→ c(n)

defines a (homotopy cofinal) functor [8, 22.11] pt : ∆C→ C. We can use the pull-back along pt
to embed Fun(C,M) in Fun(∆C,M), and then use the Reedy model structure on Fun(∆C,M)

for homotopy colimit computations.
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Sections over a Reedy category

In this paper, we study families of model categories and their associated categories of
sections. In light of the Grothendieck construction [10, 32], a natural way to treat a family of
categories indexed by C is to consider a functor E → C together with additional conditions
(that we survey in Section 1).

Given a family E→ C, we can associate to it the category of sections Sect(C,E), consisting
of those functors S : C → E such that p ◦ S = idC. The case of functors C → M can be
recovered by considering the trivial family, given by projection prC : M× C → C: the sections
of prC are identified with Fun(C,M).

For an example of a nontrivial model-categorical family, denote by CRing the category
of commutative rings and consider a small diagram A : C → CRing. For a ring R, denote
by C•(ModR) the category of chain complexes of modules over R, that can be endowed with
projective model structure [17]. Define ModA to be the category consisting of pairs (c,M)

where c is in C and M is a complex of A(c)-modules. A morphism (c,M) → (c′, N) in E is
given by a map f : c→ c′ in C and a chain map M → N |A(c) of complexes of A(c)-modules,
where we restrict N along the map A(f) : A(c) → A(c′); by adjunction, it is the same data
as a map of complexes of A(c′)-modules A(c′) ⊗A(c) M → N . This example of algebras and
modules can be generalised [30, 15], with the abstraction being the notion of a Quillen presheaf
[16, 3], which is the same data as a functor from a small category C to model categories and
Quillen adjunctions.

When C = ∆, the category of sections Sect(∆,ModA) plays an important role in the
questions of cohomological descent: inside Sect(∆,ModA), there is a full subcategory denoted
SectLcart(∆,ModA) consisting of sections S that send [n]→ [m] in ∆ to a quasi-isomorphism
A(m) ⊗L

A(n) S(n) → S(m). As explained in [30], the category SectLcart(∆,ModA) is the
category of descent data in derived algebraic geometry, see also Remark 3.48.

To work with sections homotopically, one would like to, just as in the case of functors
to a model category, have a model structure. We thus pose the following problem: given a
family p : E → R over a Reedy category R, formulate the requirements on p for the category
Sect(R,E) to have a model structure, that specialises to the Reedy model structure in the case
of a trivial family.

Our findings are summarised by Theorem 2.11 in the main text:

Theorem 1. Let R be a Reedy category and E→ R an admissible model semifibration. Then the
category of sections Sect(R,E) has a model structure with objectwise weak equivalences.

Let us explain the conditions imposed on E→ R.

The functor p : E → R cannot be completely general: as it turns out, the appropriate
condition on p is that of a semifibration, which is a mixture of the conditions of Grothendieck
fibration and opfibration. In detail, the semifibration property consists in requiring that the
restriction E|R− → R− is a Grothendieck prefibration; the restriction E|R+ → R+ is dually
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assumed to be a preopfibration. Denoting E(c) := p−1(c), these two conditions imply that for
each f− : x → y in R−, there is a functor f∗− : E(y) → E(x), and dually for each f+ : x → y

in R+, there is a functor f+
! : E(x) → E(y). The final requirement of a semifibration relates

these two classes of functors, see Definition 1.38 and Proposition 1.40 for detail.

Given an object x ∈ R of a Reedy category R, denote Lat(x) ⊂ R/x the “latching cat-
egory”, consisting of all R+-maps y → x without the identity map. Similarly, the “matching
category”Mat(x) ⊂ x\C consists of all R−-maps x→ y minus the identity. The semifibration
property of E → R implies the existence of two restriction functors Lx : E|Lat(x) → E(x) and
Rx : E|Mat(x) → E(x). Given a section S : R → E, the latching and the matching object
functors are defined as follows:

L xS := lim−→Lat(x)
LxS|Lat(x), M xS := lim←−Mat(x)

RxS|Mat(x)

(we assume that all needed (co)limits exist). Given a section S : R → E of the semifibration
E→ R, its value S(x) fits into a diagram

L xS → S(x)→M xS

and just as in the classical Reedy case, such diagrams for different x completely control the
behaviour of S.

The semifibration E → R being model means that each fibre E(x) is a model category,
and that we also require the transition functors f+

! : E(x)→ E(y) along R+-maps to preserve
cofibrations and trivial cofibrations (we do not require the preservation of colimits, which per-
mits to consider such functors as tensor products, and consequently the examples of algebras
and TQFT [19]). A dual condition of preserving fibrations and trivial fibrations should hold for
f∗− : E(y)→ E(x). For each map of sections S → T , there is a naturally induced diagram

L xS - S(x) - M xS

L xT
?

- T (x)
?
- M xT.

?

We define S → T to be a Reedy cofibration if for each x ∈ R, the map L xT
∐

L xS
S(x)→ T (x)

is a cofibration in E(x). Dually, S → T is a Reedy fibration if for each x ∈ R, the map
S(x) → M xS

∏
M xT

T (x) is a fibration in E(x). The Reedy weak equivalences are defined
objectwise.

The defined classes of maps give a model structure on Sect(R,E), provided that the model
semifibration E → R satisfies the admissibility condition, Definition 2.9. The admissibility
guarantees that the functor S 7→ L xS sends (trivial) Reedy cofibrations to (trivial) cofibrations,
and dually for M x. The examples of admissible families are covered by Lemma 2.10. A Quillen
presheaf is admissible, since its transition functors preserve (co)limits. A Grothendieck fibration
in model categories and right derivable functors over [n] is also admissible, which follows from
the simple structure of the matching categories of [n].
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The proof of Theorem 1 is similar to the one of the classical case. The explicit description
of the model structure permits to verify various properties, such as being cofibrantly generated
under reasonable assumptions, Propositions 2.30 and 2.32.

Comparison with higher-categorical sections

The second part of our work establishes a relation with the higher category theory (that we
model using the language of quasicategories [18, 6]). To begin, recall that given a category M

with weak equivalences W, its (∞, 1)-localisation is an (∞, 1)-functor F : M → LWM, such
that for any (∞, 1)-category Z, the induced (∞, 1)-functor F ∗ : Fun(LWM,Z)→ Fun(M,Z) is
full and faithful, and its essential image consists of (∞, 1)-functors that send W to equivalences
of Z. For model categories, the (∞, 1)-localisation enjoys various special properties [11]. In
particular, Cisinski [6] has shown that given any model category M and a small category C, the
natural (∞, 1)-functor Fun(C,M)→ Fun(C, LWM) induces an (∞, 1)-equivalence

LFun(C,M)→ Fun(C, LWM)

where on the left, we localise with respect to the objectwise weak equivalences.

Thanks to the various literature on quasicategories [18, 6, 9, 11, 20] there is now a well-
developed theory of Grothendieck fibrations of (∞, 1)-categories. In some cases [11, 20], it is
known how to (∞, 1)-localise a family E → R to get a properly behaved higher-categorical
family LE → R. We thus ask how the localisation LSect(R,E) of the model structure of
Theorem 1 is compared with the (∞, 1)-sections Sect(R, LE).

We treat the comparison issue in the following generality. A functor E → R is a left model
Reedy fibration if it is a Grothendieck opfibration, a Grothendieck fibration over R−, and is an
admissible model semifibration. Localising E along the union ∪cW(c) of the fibrewise weak
equivalences yields an (∞, 1)-functor LE → R that is a coCartesian fibration (in the sense of
[18, Definition 2.4.2.1]) and a Cartesian fibration over R−. The natural functor E→ LE induces
the (∞, 1)-functor Sect(R,E)→ Sect(R, LE). The following result is Theorem 3.37:

Theorem 2. Let E → R be a left model Reedy fibration. Then the induced infinity-functor
LSect(R,E)→ Sect(R, LE) is an equivalence of quasicategories.

The origins of Theorem 2 lie in the paper [16]. However, the proof of [16, Théorème 18.2] is
incomplete: the authors do not provide proofs for the needed higher-categorical arguments, and
the model-categorical considerations of [16, Théorème 18.2] contain a mistake (it is assumed
that the latching object functor preserves fibrant objects). Nonetheless, our proof of Theorem 2
shows that the infinity-categorical Reedy induction can be carried out along the general lines
of [16]. There are other comparison results [13, 28] that work under more assumptions on the
family E → R. For example, [13] bypasses the Reedy induction, yet is only valid for Quillen
presheaves in the combinatorial model setting.
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The example of Quillen presheaves has a particularly good strictification result, conjectured
in [16] and outlined in Proposition 3.42:

Proposition 3. LetM→ C be a Quillen presheaf over a small category C. Then localisingM along
the fibrewise weak equivalences yields an equivalence of (∞, 1)-categories

LSect(C,M)
∼−→ Sect(C, LM).

where we treat Sect(C,M) as a category equipped with objectwise weak equivalences, with no model
structure.

Organisation of the paper

Section 1 covers various categorical preliminaries that are related to the semifibrations and
Reedy categories. We outline the induction for sections using the notions of Noether categories,
Definition 1.21. The notion of a semifibration is introduced in Definition 1.38. Section 1 includes
more material than is required for Section 2, however, we decided to keep many propositions
for future reference. This comment also applies to the Appendix, which gives a variation of the
argument leading to Theorem 1 in a specialised setting.

Section 2 establishes the notion of a model semifibration and admissibility, Definition 2.9,
and proves Theorem 1. We discuss the cofibrant generation of Reedy model structures, proving
Propositions 2.30 and 2.32.

In Section 3 we address the comparison theorem. We start by recalling a result of Lurie [18,
Proposition A.2.9.14] asserting the higher-categorical Reedy induction for the functors to a qua-
sicategory. We then generalise it to the case of a coCartesian fibration E→ R of quasicategories
over a Reedy category that is also Cartesian over R− and is suitably bicomplete, Proposition
3.17. After studying some aspects of relative categories in families, we prove a model-categorical
counterpart, Proposition 3.40, of Proposition 3.17. Both these propositions lead to the proof of
Theorem 2. We conclude Section 3 by discussing the strictification of Quillen presheaves.
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1 Semifibrations

1.1 Cartesian arrows, prefibrations, sections

Let p : E → C be a functor. For c ∈ C, denote by E(c) the fibre category p−1(c) over c. It
thus consists of all X ∈ E with p(X) = c and all the maps X → X ′ with p(X → X ′) = idc.

Definition 1.1. A morphism α : X → Y of E

• is p-cartesian, or simply cartesian, if for any other map β : X ′ → Y with p(β) = p(α)

there exists a unique morphism γ : X ′ → X in E(p(X)) which factors β as α ◦ γ.

• is p-opcartesian, or simply opcartesian, if for any other map δ : X → Y ′ with p(δ) = p(α)

there exists a unique morphism η : Y → Y ′ in E(p(Y )) which factors δ as η ◦ α.

A p-cartesian or p-opcartesian morphism α : X → Y is covering the morphism f : c→ c′

iff p(α) = f .

In our definition of cartesian and opcartesian morphisms, we are faithful to the original
terminology of [10]. Today, a different definition of (op)cartesian maps is presented in many
sources [32, 19], with the definition of [10] referred to as “locally cartesian” morphism.

Definition 1.2. A functor p : E→ C is a

• prefibration iff for any f : x → y of C and Y ∈ E(y) there exists a cartesian morphism
α : X → Y covering f , that is, p(α) = f .

• preopfibration iff for any f : x→ y of C and X ∈ E(x) there exists a cartesian morphism
δ : X → Z covering f , that is, p(α) = f .

Lemma 1.3. If p : E→ C is a prefibration, then pop : Eop → Cop is a preopfibration. �

Notation 1.4. If p : E → C is a prefibration, f : x → y is a morphism and Y ∈ E(y), we
shall usually denote a chosen cartesian lift by f∗Y → Y . The same applies when p is a
preopfibration, where for X ∈ E(x), we denote by X → f!X the chosen opcartesian lift.

Definition 1.5. A prefibration or preopfibration q : E → C is small if both C and E are small
categories. A prefibration or preopfibration q is discrete if for each c ∈ C, the category E(c) has
no non-identity maps (in other words, it is isomorphic to a set).

Lemma 1.6. Let p : E→ C be a discrete prefibration. Then the composition of cartesian morphisms
of E is cartesian. The dual is true for preopfibrations.
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Proof. Clear, due to the lack of fibre maps. �

In general, not any pre(op)fibration has the property described in the previous lemma.
Those which have it, are called Grothendieck (op)fibrations.

Definition 1.7. A prefibration p : E → C is, furthermore, a Grothendieck fibration iff the com-
position of cartesian maps is cartesian. The definition for Grothendieck opfibrations is dual.

Discrete pre(op)fibrations are thus automatically (op)fibrations. The examples of non-
discrete fibrations are, however, abundant.

Remark 1.8. It is not necessarily the case that the category E is “bigger” than C. For example,
the functor C→ C

∐
D is a fibration and an opfibration.

Remark 1.9. In what follows, (op)fibrations will be considered as special cases of pre(op)fibra-
tions, with additional remarks where necessary. Otherwise, any definition or a result given for
a pre(op)fibration implies the same for an (op)fibration.

Construction 1.10. Given a functor E from C to categories, we produce an opfibration, which
we denote

∫
E → C and call the Grothendieck construction [32] of E. An object of

∫
E is a

pair (c,X) of c ∈ C and X ∈ E(c), and a morphism (c,X) → (c′, X ′) consists of f : c → c′

together with a map α : E(f)(X)→ X ′ in E(c′).

Dually, for a contravariant category-valued functor F defined on C, its Grothendieck con-
struction is a fibration

∫
F → C with same pairs (c, Y ) serving as objects, but with maps given

by pairs of f : c→ c′ and β : Y → F (f)Y ′ in F (c).

Grothendieck construction motivates the following perspective. Consider a prefibration
p : E → C. Let f : c → c′ be a morphism in C and Y ∈ E(c′). Choose a cartesian morphism
α : f∗Y → Y covering f . This specifies an object f∗Y ∈ E(c). By the universal property
of cartesian maps, the assignment Y 7→ f∗Y defines a functor f∗ : E(c′) → E(c), which is
called transition functor along f . Due to the universal property of cartesian arrows, for each
composable pair f, g, there exists a ‘coherence’ natural transformation f∗ ◦ g∗ → (g ◦ f)∗,
which is an isomorphism if p is a Grothendieck fibration. For any composable triple of arrows
f, g, h, any choice of coherence morphisms leads to the following commutative diagram:

f∗g∗h∗ - (gf)∗h∗

f∗(hg)∗
?

- (hgf)∗.
?

(1.1 )

For a preopfibration, the whole picture is dual. In the literature (see [10] and [32] for the case
of Grothendieck fibrations), such choice of an assignment f 7→ f∗ together with coherence
isomorphisms is called a cleavage. One may thus wonder if there is a way to obtain (lax)
category-valued functors from (pre)fibrations.
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Definition 1.11. Let p : E→ C and q : E′ → C be two functors.

• A morphism of p and q is a functor F : E → E′ commuting with the functors to C, that
is, q ◦ F = p.

• A section of p is a functor S : C → E such that p ◦ S = idC. In other words, it is a
morphism from idC : C→ C to p : E→ C.

Given two morphisms F, F ′ : E → E′, a morphism between them is a natural transformation
α : F → F ′ such that for each X in the domain E, αX projects to idp(X).

We denote by Lax(E,E′) the category of morphisms between p and q, with the functors to
C being implicit. By Sect(C,E) = Lax(C,E) we denote the category of sections of p.

Definition 1.12. Let p : E → C and q : E′ → C be two prefibrations (respectively preopfi-
brations). A morphism F : E → E′ is called a cartesian morphism if it takes (op)cartesian
morphisms of E to (op)cartesian morphisms of E′.

We denote by Cart(E,E′) the full subcategory of Lax(E,E′) consisting of cartesian mor-
phisms.

Construction 1.13. Take a fibration p : E→ C, and for each c ∈ C, denote by C/c the category
of objects over c [22]. The forgetful functor C/c → C is an fibration. Then the assignment
c 7→ Cart(C/c,E) defines a contravariant category-valued functor on C. When C is small, this
construction is inverse up to an equivalence [32] to (Grothendieck) Construction 1.10.

If p is only a prefibration, the assignment c 7→ E(c) = Cart(C/c,E) defines a lax con-
travariant functor from C to categories. Indeed, for each f : c → c′, we get a functor
f∗ : E(c′) → E(c), and as before, one can witness the existence of natural transformations
f∗g∗ → (gf)∗ and of the diagram like (1.1 ).

The cited result [32] implies that any fibration (and, similarly, an opfibration) p : E → C

can be, up to an equivalence, replaced by an fibration p̃ : Ẽ → C, for which the assignment
c 7→ E(c) can be made into a strict functor by a choice of transition functors along maps in C.
We call the fibrations (similarly, fibrations) with the latter property strictly cleavable.

Definition 1.14. A functor p : E → C is an isofibration if for any isomorphism f : c
∼→ d of C

and an object Y with p(Y ) = d there exists an isomorphism α : X
∼→ Y with pα = f .

A Grothendieck (op)fibration is automatically an isofibration, but a pre(op)fibration is not.
In particular, in an arbitrary prefibration, a cartesian lift of an isomorphism is not necessarily
an isomorphism.

Convention 1.15. From now on, any prefibration or preopfibration we consider is assumed to
be also an isofibration. For an isofibration p : E → C and c ∈ C, the notation E(c) will denote
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p−1(c), the strict categorical fibre of p over c. Note that in this case, the strict fibre is equivalent
to the essential fibre of p over c: the objects of the latter are pairs of d ∈ D and α : p(d) ∼= c in
C, and morphisms (d, α)→ (d′, β) are given by f : d→ d′ such that βp(f) = α. In particular,
p(f) is an isomorphism.

Example 1.16. Let L :
∫
E→

∫
E′ be a morphism between two Grothendieck constructions of

covariant functors E,E′ : C → Cat. For each c ∈ C, L specifies a functor Lc : E(c) → E′(c).
For each morphism f : c→ c′, we get a 2-square

E(c)
Lc- E′(c)

Lf⇐

E(c′)

E(f)
?

Lc′
- E′(c′).

E′(f)
?

The natural transformation appears because the image under L of an opcartesian map X →
E(f)X (X ∈ E(c)) may not be opcartesian. Factoring LX → LE(f)X ,

LX → E′(f)LX → LE(f)X,

gives E′(f)LX → LE(f)X ; for each X ∈ E(c), all such maps assemble into Lf . For two
composable arrows f : c→ c′, g : c′ → c′′, there is a pasting property relating Lf , Lg and Lgf :
the pasting of this diagram

E(c)
E(f)
- E(c′)

E(g)
- E(c′′)

Lf
⇓

Lg
⇓

E′(c)

Lc
?

E′(f)
- E′(c′)

Lc′
?

E′(g)
- E′(c′′)

Lc′′
?

equals Lgf .

For fibrations, there is a difference on the level of 2-diagrams. Consider F,F′ : Cop → Cat

and take a lax morphism M :
∫
F →

∫
F′ of fibrations over C. For f : c→ c′, we then obtain

a diagram

F(c)
Mc- F′(c)

Mf⇒

F(c′)

F(f)
6

Mc′

- F′(c′)

F′(f)
6

with Mf given by arrows of the form MF(f)Y → F′(f)MY .
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1.2 Limits and adjunctions

Consider a Grothendieck prefibration E→ C over a base C. Let us study the question when
the category of sections Sect(C,E) admits limits or colimits. As a related question, given a
pullback square of fibrations

F ∗E - E

D
? F

- C
?

we ask if the natural restriction functor F ∗ : Sect(C,E)→ Sect(D,E) admits an adjoint.

Basic results

Definition 1.17. A functor E→ C is fibrewise-complete if every fibre E(c) is complete. Likewise,
E→ C is fibrewise-cocomplete if every fibre E(c) is cocomplete.

A fibration, opfibration, prefibration or preopfibration is fibrewise complete or cocomplete
if it is true on the level of the underlying functor.

Proposition 1.18. Let E → C be a prefibration which is fibrewise cocomplete. Then the category
Sect(C,E) is cocomplete, with colimits calculated fibrewise. The dual result concerns limits in the
category of sections of a complete preopfibration.

Proof. Let S• : I → Sect(C,E) be a diagram of sections,

(i, c) ∈ I × C 7→ Si(c) ∈ E(c).

We then define (lim−→I
S•)(c) = lim−→I

Si(c), that is, the colimit of S•(c) : I → E(c) in the fibre
E(c). Take a morphism f : c→ d, it then suffices to construct

(lim−→I
S•)(c)→ f∗(lim−→I

S•)(d) (1.2)

for some choice of a cartesian morphism f∗(lim−→I
S•)(d)→ (lim−→I

S•)(d). If we choose cartesian
morphisms for each i ∈ I , obtaining the diagram

f∗S•(d) : I → E(c), i 7→ f∗Si(d),

then we have the canonical morphism

lim−→I
f∗S•(d)→ f∗(lim−→I

S•(d))

induced by the colimit property. Combining it with the map lim−→I
S•(c) → lim−→I

f∗S•(d)

induced by the section structure of S•, we get the map (1.2). One can check that the induced
maps are compatible with the composition of morphisms in C in a suitable way. We leave it to
the reader: everything follows, in essence, from the universality of maps from a colimit.
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Let X ∈ Sect(C,E) be a section, and denote by c∗X : I → Sect(C,E) the constant diagram
valued at X . Given a map S• → c∗X , we want to construct an adjoint map lim−→I

S• → X .
First, we can construct, fibre by fibre, the maps

lim−→I
S•(c)→ X(c).

For a morphism f : c→ d, we can then draw the diagram

lim−→I
S•(c) - lim−→I

f∗S•(d) - f∗ lim−→I
S•(d)

X(c)
?

- f∗X(d)
? =

- f∗X(d)
?

The left square commutes because S• → c∗X is a morphism of sections, the right square
commutes due to the universal property of colimits. We thus see that the family of fibrewise
maps gives a morphism of sections lim−→I

S• → X . The verification in the other direction is
similar. �

Given a pullback square of prefibrations,

F ∗E - E

D
? F

- C,
?

the assignment S 7→ S ◦ F defines a functor F ∗ : Sect(C,E) → Sect(D,E). One would
tentatively write, then, the left adjoint F! to F ∗ as a certain colimit over the comma category
F/c. However, the fibration structure does not permit for sensible formulas to appear. What
remains true is the following:

Proposition 1.19. Let E→ C be a fibrewise-cocomplete prefibration, and

F ∗E - E

D
? F

- C
?

be a pullback square. Assume that F : D → C is an opfibration. Then F ∗ : Sect(C,E) →
Sect(D,E) admits a left adjoint F!, which can be calculated as

F!T (c) = lim−→D(c)
T |D(c).

Proof. Straightforward and similar to Proposition 1.18. Note that F : D → C being an
opfibration implies that the natural functor D(c) → F/c admits a left adjoint and is hence
cofinal. �
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Locally Noether categories

In what follows, we shall use the words “sequence” and “chain” interchangeably.

Definition 1.20. Let C be a category, and c ∈ C be an object. We say that c is k-bounded from
the right for some k ∈ N if any sequence of n morphisms starting with c,

c −→ c1 −→ ... −→ cn

contains at least n− k isomorphisms so long as n > k. Dually, c is k-bounded from the left if
any sequence of n morphisms ending with c,

cn −→ cn−1 −→ ... −→ c1 −→ c

contains at least n− k isomorphisms so long as n > k

We shall often say “bounded” without being precise about the direction when it leads to no
confusion.

Definition 1.21. A category C is called locally Noetherian, or simply a Noether category if for
each object c ∈ C there exists a number k, such that c is k-bounded from the right.

Dually, a category C is called locally Artinian, or simply an Artin category if for each object
c ∈ C there exists a number k, such that c is k-bounded from the left.

Remark 1.22. Evidently, if C is a Noether category, then Cop is an Artin category. We shall
henceforth stick with the Noether case in our considerations, but all the results can of course
be dualised for the Artin case.

For a Noether category C and c ∈ C, denote by |c| ≥ 0 the minimal such k so that c is
k-bounded from the right.

Lemma 1.23. For c, c′ ∈ C, if |c| < |c′|, then C(c, c′) = ∅. If |c| = |c′| and there is a map c→ c′,
then it is an isomorphism. In particular, any endomorphism of c is an isomorphism.

Proof. Let c′ → c′1 → ... → c′|c′| be a chain starting with c of length |c′| such that no map in
the sequence is an isomorphism. If there is a map c → c′ in C, composing with it would yield
a sequence of maps of length |c′|+ 1 starting from c.

Thus, if |c| < |c′|, we have a sequence of non-invertible maps of length |c′|+1 starting from
c, out of which at least |c′| maps are non-invertible, and this is impossible. If |c| = |c′|, having
a map c→ c′ becomes only possible if it is an isomorphism. �

We thus have a degree function c 7→ |c|, which can be considered as a contravariant functor
| − | : Cop → N to the category N of natural numbers and unique morphisms in positive
direction.
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Notation 1.24. For a Noether category C, denote by Cn the subcategory of objects c such that
|c| ≤ n. There is an induced filtration C0 ⊂ C1 ⊂ ... ⊂ Cn ⊂ ... ⊂ C. Denote also by Gn the
subcategory of C consisting of c with |c| = n. Lemma 1.23 implies that Gn is a groupoid.

Let E → C be a prefibration. For x ∈ C, if D is a subcategory x\C, then the prefibration
property implies the existence of a functor Resx : E|D → E(x). An object Y ∈ E|D living over
f : x → y of D is sent to f∗Y where f∗Y → Y is a cartesian map. The choice of Resx is
unique up to a unique isomorphism.

Let S be a section over Cn−1. Consider the limit lim←−c\Cn−1
RescS where c ∈ Gn. Since the

maps c → c′ are isomorphisms for |c| = |c′|, we naturally have E(c) ∼= E(c′) (see Convention
1.15) and we get a canonically determined map lim←−c\Cn−1

RescS → lim←−c′\Cn−1
Resc′S.

Definition 1.25. Let E→ C be a prefibration over a Noether category C and S ∈ Sect(Cn−1,E).
The n-th matching system of S, denoted M nS, is the section

M nS : Gn → E|Gn , c 7→ lim←−c\Cn−1
RescS ∈ E(c)

of the prefibration E→ Gn, assuming that all the necessary limits exist.

The assignment S 7→M nS defines a functor M n : Sect(Cn−1,E)→ Sect(Gn,E).

Proposition 1.26. There is a comma square

Sect(Cn,E) - Sect(Gn,E)

⇐

Sect(Cn−1,E)
?

M n

- Sect(Gn,E)

=
?

making Sect(Cn,E) into the comma category Sect(Gn,E)/M n. In other words, the assignment

Y ∈ Sect(Cn,E) 7→ (Y |Cn−1 , Y |Gn , Y |Gn →M nY |Cn−1) ∈ Sect(Gn,E)/M n

is an equivalence of categories.

Proof. Assume that we are given a section S on Cn−1 and a map X → M nS of sections in
Sect(Gn,E). We show how to construct a new section S̃ : Cn → E. For an object c ∈ Cn of
|c| = n, there are two kinds of maps: c→ c′ with |c′| = n and c→ c′′ with |c′′| < n. The first
ones are isomorphisms of Gn and are included in X as part of the data. The map X →M nS

then provides us with morphisms X(c)→ S(c′′) in a manner compatible with Gn. �

Let I be a small category and denote by X• :∈ Sect(R,E)I a diagram of sections,

(x, i) 7→ Xi(x).

If the fibre E(x) admits limits, we may compute the limit of the functor i 7→ Xi(x), which
we denote lim←−I(X•(x)). We would now like to conclude if the limit of X•, denoted lim←−I X•,
exists globally in Sect(C,E).
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Proposition 1.27. Let C be a Noether category and E → C a Grothendieck prefibration with
complete fibres. Then the category of sections Sect(C,E) admits limits, and moreover, for each
X• ∈ Sect(C,E)I and an object x with |x| = n, there is the following pullback square:

(lim←−I X•)(y) - lim←−I(X•(y))

M n(lim←−I X•)(y)
?

- lim←−I(M nX•)(y).
?

(1.3 )

where M nX• : Gn × I → E is the functor (y, i) 7→ (M nXi)(y).

Proof. For each x with |x| = 0 we define (lim←−I X•)(x) = lim←−I(X•(x)), that is we take the limit
in the corresponding fibre E(x). Since there are no maps out of objects of degree zero, and
E(x) ∼= E(x′) for x ∼= x′, we get a well-defined section C0 → E.

Having specified (lim←−I X•) on Cn−1, the diagram (1.3 ) tells us precisely how to define the
value (lim←−I X•)(y) for y ∈ Gn. The right vertical arrow exists as a limit of the natural map
X•(y) → (M nX•)(y). The bottom horizontal arrow exists because, by induction, there are
natural maps (lim←−I X•)(x) → Xi(x) for x ∈ Cn−1. These maps induce M n(lim←−I X•)(y) →
(M nXi)(y) and then, consequently, we get a map to lim←−(M nX•)(y).

To verify that the constructed section Y = lim←−I X• is the limit in Sect(C,E), proceed by
induction (which is trivial in degree zero) and consider a map c∗Z → X•, where c∗Z is the
constant I-section valued at Z : Cn → E. For each y with |y| = n, we then get the following
diagram:

Z(y) - lim←−I(X•(y))

M nZ(y)
?

- M nY (y) - lim←−I(M nX•)(y)
?

which is commutative because it is simply a factoring of the commutative diagram

Z(y) - lim←−I(X•(y))

M nZ(y)
?

- lim←−I(M nX•)(y)
?

where the factoring M nZ(y)→M nY (y)→ lim←−I(M nX•)(y) exists due to the limit property
of Y on Cn−1. We thus get the commutative square

Z(y) - lim←−I(X•(y))

M nY (y)
?

- lim←−I(M nX•)(y)
?
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which, by the pullback property of the diagram (1.3 ), supplies us with Z(y)→ Y (y), as desired.
�

Proposition 1.26 can be relativised. Recall the following notions:

Definition 1.28. A functor F : D→ C is

• An open immersion if it is full, faithful, injective on objects, and for each f : c → F (d)

of C there exists a (unique) map f̃ : d′ → d in D covering f .

• An closed immersion if it is full, faithful, injective on objects, and for each f : F (d)→ c

of C there exists a (unique) map f̃ : d→ d′ in D covering f .

Recall that, for c ∈ C, a cosieve is a subcategory S ⊂ c\C closed under postcomposition:
f : c→ c′ ∈ S implies that gf is in S for any g : c′ → c′′ of C.

Lemma 1.29. For a functor F : D→ C injective on objects, the following are equivalent

• F is a closed immersion,

• F is a faithful isofibration (Definition 1.14), and for each d ∈ D, the essential image of d\D
in F (d)\C is a cosieve.

• F is a fully faithful Grothendieck opfibration with discrete fibres.

The dual is true for an open immersion.

Proof. Clear. �

In particular, let c ∈ C be an object not contained in the image of F . Then C(F (d), c) = ∅
for any d ∈ D. Thus, at most, there are only morphisms going out of c to D.

Let C be a Noether category and F : D → C a closed immersion. In what follows, we
identify D, which is also a Noether category, with its image in C.

Notation 1.30. Define Dn to be the subcategory consisting of D and all the objects c ∈ C not
belonging to D with |c| ≤ n. Denote by Fn : D → Dn the inclusion functor. There is also
an inclusion Dn → C which we leave unnamed. Finally, denote by Gn the subcategory of Dn

consisting of those objects c which do not belong to Dn−1.

For an object c ∈ C (usually assumed to be outside in Gn) we can define the category
c\Dn−1 as the usual comma category for the inclusion Dn−1 → C: its objects are maps c→ d

in C, where d belongs to Dn−1.

As usual for comma categories and prefibrations, we get the restriction functor Resc :

E|c\Dn−1
→ E(c).
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Proposition 1.31. Let F : D → C be a closed immersion of Noether categories and E → C be a
prefibration with complete fibres. Then any section X ∈ Sect(D,E) admits a right Kan extension
RanFX ∈ Sect(C,E) which restricts to right Kan extensions RanFnX ∈ Sect(Dn,E) of X along
Fn : D→ Dn. Moreover, F ∗RanFX ∼= X and for any x ∈ Gn,

(RanFnX)(x) = lim←−x\Dn−1
Resx ◦RanFn−1X (1.4)

where we implicitly restrict RanFn−1X to x\Dn−1 along the evident projection.

Proof. We construct RanFnX for each value of n by induction. For n = 0, the only objects of
x ∈ D0 which are not in D are those which admit no non-invertible maps out of themselves,
since |x| = 0. We thus pose (RanF0X)(x) to be a terminal object of E(x). The formula
(1.4) then explains how to carry on the induction: for x, y ∈ Dn which are not in Dn−1, the
maps x→ y, if exist, are invertible, and the construction of (RanFnX)(x)→ (RanFnX)(y) is
thus as trivial as in Proposition 1.26. Finally, each object (or a morphism, or a composition of
morphisms) of C belongs to some Gn, which permits us to define RanFX on the whole of C.

Since F is a closed immersion, F ∗RanFX is verified, using (1.4), to be isomorphic to X .
Let T ∈ Sect(D,E) be a section and assume we have a map α : F ∗T → X . We would like
now to obtain a (canonical) morphism β : T → RanFX . Assume by induction (which is again
trivially initiated for objects of zero degree) that we obtained this map for all c ∈ Dn−1 in a
compatible fashion. Let now x be an object of Gn. There is a diagram in E(x) of the form

T (x)→ lim←−x\Dn−1
Resx ◦ T → lim←−x\Dn−1

Resx ◦RanFn−1X = RanFnX(x)

where, if needed, both T and RanFn−1X are restricted to x\Dn−1. The first map exists due to
the section structure of T , the second map is given by the inductive assumption, and together
they provide T (x) → RanFnX(x) = RanFX(x). The described assignment is a bijection, as
verified quite easily by applying F ∗. �

The assignment X 7→ RanFX thus defines a fully faithful functor F∗ : Sect(D,E) →
Sect(C,E) right adjoint to F ∗.

Consider a closed immersion F : C′ → C and an object c ∈ C. One can form the following
pullback square in Cat

c\C′
π′
- C′

c\C

Fc
?

π
- C

F
?

with c\C′ coinciding with the usual comma category c\F . Moreover, one can verify that
each category in this diagram is Noether, with all functors preserving the degrees and the
vertical ones, F and Fc, being closed immersions (the functors π and π′, while being discrete
Grothendieck fibrations, are merely faithful).
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If we are given a fibrewise complete prefibration over C, then there is the following induced
2-diagram

Sect(c\C′,E) �
π′∗

Sect(C′,E)

⇐

Sect(c\C,E)

Fc,∗
?

�
π∗

Sect(C,E).

F∗
?

Proposition 1.32. In the diagram above, the map π∗F∗ → Fc,∗π
′∗ is an isomorphism.

We prove it by induction, forming, for each c ∈ C, denote by C′n and (c\C′)n the induction
categories as in Notation 1.30, with πn : (c\C′)n → C′n. being the projection functor. One can
see that, moreover, (c\C′)n ∼= c\C′n. Then Proposition 1.32 will follow from

Proposition 1.33. Let F : C′ → C be a closed immersion of Noether categories and E → C be a
prefibration with complete fibres. Then for each n the 2-square

Sect(c\C′,E) �
π′∗

Sect(C′,E)

⇐

Sect(c\C′n,E)

RanFc,n
?

�
π∗n

Sect(C′n,E).

RanFn
?

commutes up to an isomorphism.

Proof. We shall proceed by induction on n. For n = 0, the extension to objects of degree
zero outside of C′ or c\C′ is given by terminal objects, hence the isomorphism is trivial. Take
now an object of c\C′n, represented by a map c → d with d outside of t iC′ and the degree of
|c→ d| = |d| equal to n. We can then write that

π∗nRanFnX(c→ d) = RanFnX(d) = lim←−d\C′n−1

Resdπ
∗
n−1RanFn−1X

with πn−1 here being the functor d\C′n−1 → C′n−1, and also that

Fc,∗π
′∗X(c→ d) = lim←−(c→d)\(c\C′n−1)

Resc→dRanFc,n−1π
′∗X ∼= lim←−d\C′n−1

ResdRanFc,n−1π
′∗X

where in the middle term one more restriction is implicit. By induction,

π∗n−1RanFn−1X → RanFc,n−1π
′∗X

is an isomorphism, which induces the isomorphism between the two limit expressions above. �
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1.3 Factorisation systems and semifibrations

Definition 1.34. A factorisation system on a category C consists of a pair of subcategories
L ,R ⊂ C containing all isomorphisms of C, such that any morphism f : c → c′ in C can
be decomposed as

f : c
l−→ c′′

r−→ c′ (1.5 )

with l ∈ Mor L and r ∈ Mor R. This factorisation must be moreover unique up to unique
isomorphism.

In this work, a factorisation category will denote a triple (C,L ,R) of a category together
with a factorisation system (L ,R).

When clear, we shall simply refer to a factorisation category (C,L ,R) as C. Due to the
isomorphism condition L and R contain all the objects of C. We shall often refer to L as the
left class of maps, and to R as the right class of maps.

Definition 1.35. A strict factorisation functor F : (C′,L ′,R′)→ (C,L ,R) is a functor C′ →
C such that F (L ′) ⊂ L and F (R′) ⊂ R. We shall occasionally denote by FL : L ′ → L and
FR : R′ → R the induced functors.

An important class of factorisation categories is given by Reedy categories. To repeat,

Definition 1.36. A Reedy category R is a factorisation category (R,R−,R+) together with a
degree function deg : R→ N taking values in natural numbers, such that

1. the isomorphisms of R are identities,

2. the non-identities of R− lower the value of deg,

3. the non-identities of R+ raise the value of deg,

It is implied that R− is locally Noether and R+ is locally Artin. For the literature concerning
Reedy categories, see [18, 12, 17, 26]. We assume the degree function to be taking values in
natural numbers. While this suffices for most practical examples, our choice excludes from
consideration the case R = β for an arbitrary ordinal β. The latter has some importance for
the theory-building of Section 3, but is a relatively mild case and will be treated by hand once
needed. Henceforth, we shall also be implicit about the degree function in our notation.

The following definition concerns the way factorisation functors interact with the factorisa-
tions (1.5 ).

Definition 1.37. Let F : (C′,L ′,R′) → (C,L ,R) be a factorisation functor. We say that F
is right-closed if for any C-map of the form c→ F (c′), the (L ,R)-factorisation of this map can
be chosen as

c
l−→ F (c′′)

F (r)−→ F (c′)
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with r : c′′ → c′ belonging to R′. Dually, F is left-closed, if for any C-map of the form
F (c′)→ c, the (L ,R)-factorisation of this map can be chosen as

F (c′)
F (l)−→ F (c′′)

r−→ c

with l : c′ → c′′ belonging to L ′.

Semifibrations

Definition 1.38. Let (C,L ,R) be a factorisation category. A functor p : E → C is called a
semifibration over C if it is an isofibration and the following conditions are satisfied.

1. For any l : c→ c′ in L and Y with p(Y ) = c′ there exists a cartesian (Definition 1.1) lift
λ : Y ′ → Y of l.

2. For any r : x→ y in R and X with p(X) = x there exists an opcartesian lift ρ : X → X ′

of r.

3. For any α : X → Y of E such that p(α) decomposes as

p(X)
r−→ c

l−→ p(Y )

with r ∈ R and l ∈ L , we require that α factors as

α : X
ρ−→ X ′

ϕ−→ Y ′
λ−→ Y (1.6 )

with ρ : X → X ′, being an opcartesian morphism over r, λ : Y ′ → Y being a cartesian
morphism over l, and p(ϕ) = idc.

Lemma 1.39. The third condition of Definition 1.38 is equivalent to the following: for any α : X →
Y of E such that p(α) decomposes as

p(X)
r−→ c

l−→ p(Y )

with r ∈ R and l ∈ L , we require that

α : X
ρ−→ X ′

ϕ−→ Y ′
λ−→ Y

with ρ : X → X ′, being a morphism over l, λ : Y ′ → Y a morphism over r, and p(ϕ) = idc.

Proof. Follows from the universality of op(cartesian) arrows. �

Given a semifibration p : E → C, If f : c → c′ is a map in L, then there is a functor
f∗ : E(c′) → E(c) naturally induced by cartesian lifts. If g : x → y is a map in R, we equally
have g! : E(x)→ E(y) induced by opcartesian lifts.
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Proposition 1.40. Let p : E→ C be a semifibration over (C,L ,R). Then

1. The factorisation (1.6) is natural and unique up to unique isomorphism,

2. Let

x
f
- y

z

g
?

k
- t

h
?

be a commutative diagram with f, k ∈ L and g, h ∈ R. We then have a two-square

E(x) �
f∗

E(y)

⇒

E(z)

g!
?
�
k∗

E(t)

h!
?

with the natural transformation g!f
∗ → k∗h! induced canonically.

Proof. The first assertion is clear given the universal properties of cartesian and opcartesian
morphisms.

For the second assertion, take Y ∈ E(y). Then we get the diagram in E

Y �
cart

f∗Y
ocart
- g!f

∗Y

h!Y �
cart

ocart -

k∗h!Y

with maps labeled as cart being cartesian from the fibration structure over L , and likewise
ocart being opcartesian from the opfibration structure over R. Then, since hf = kg, the

composition f∗Y → Y → h!Y lies over x
g→ z

k→ t, and so, by (3) of Definition 1.38, it can be
decomposed as

f∗Y → g!f
∗Y → k∗h!Y → h!Y

and we get a morphism g!f
∗Y → k∗h!Y as desired. �

Since C is a factorisation category, any morphism x
g→ z

k→ t with g in R and k in L can
be completed to a diagram

x
f
- y

z

g
?

k
- t

h
?
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as in Proposition 1.40 above. So the base-change property for the transition functors can be
obtained if one assumes one of the following.

Lemma 1.41. Let (C,L ,R) be a factorisation category and E→ C be an

• either a fibration over C which is a preopfibration over R,

• or an opfibration over C which is a prefibration over L ,

then E→ C is a semifibration.

Proof. In the first case, for the diagram

Y �
cart

f∗Y
ocart
- g!f

∗Y

h!Y �
cart

ocart -

k∗h!Y

as before we get that the composition f∗Y → Y → h!Y factors through the cartesian map
k∗h!Y → h!Y (as implied by the stronger universal property of cartesian maps in this case
[32]), so we get a map f∗Y → k∗h!Y . This map in turn is factored by the opcartesian
map f∗Y → g!f

∗Y , and we obtain the Y -part g!f
∗Y → k∗h!Y of the base-change natural

transformation. It can then be used to construct the factorisation of Definition 1.38. The second
case is dual. �

A more general statement in this direction is:

Lemma 1.42. Let E → C be a prefibration over a factorisation category (C,L ,R), such that the
restriction E|R → R is also a preopfibration, and such that the composition of cartesian lifts covering

x
r→ z

l→ y (with r in R and l in L ) is cartesian. Then E→ C is a semifibration over (C,L ,R).

Proof. In the proof of Lemma 1.41, we need the strong cartesian universal property exactly for

arrows covering compositions like x
r→ z

l→ y. �

1.4 Limits and adjoints in categories of sections

In a moment, we shall prove the following:

Proposition 1.43. Let (C,L ,R) be a factorisation category and E → C be a semifibration with
fibres which are complete and admit arbitrary coproducts. Assume that the category Sect(L ,E|L )

has limits. Then so does the category Sect(C,E). Moreover, the restriction functor Sect(C,E) →
Sect(L ,E) preserves limits.
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Dually, if E → C has cocomplete fibres and fibrewise products, and Sect(R,E|R) admits col-
imits, then so does the category Sect(C,E), and the restriction functor Sect(C,E) → Sect(R,E)

preserves colimits.

This can be interpreted as saying that in order to calculate limits in Sect(C,E), it is sufficient
to do so in Sect(L,E). From now on, we shall concentrate on the limit part, the colimit part
being dual.

Lemma 1.44. Let c ∈ C and consider the undercategory c\L . Then the functor u∗c : Sect(L ,E)→
Sect(c\L ,E), which is induced along the natural forgetful functor uc : c\L → L , preserves
limits.

Proof. The functor u∗c admits a left adjoint

uc! : Sect(c\L ,E)→ Sect(L ,E)

given by the formula (uc!X)(c′) =
∐

L (c,c′)X(c′). �

For any object c ∈ C, the semifibration structure provides us with the restriction functor

Resc : E|c\L → E(c).

Proof of Proposition 1.43. Let X• : I → Sect(C,E) be a diagram,

i ∈ I 7→ ( c 7→ Xi(c) ),

and we would like to construct its limit Y = lim←−I X• ∈ Sect(C,E). We write the following
expression

Y (c) = lim←−X•(c) = lim←−c\L Resc(lim←−
c\L
I

X•|c\L )

where lim←−
c\L
I

X•|c\L is the limit of X•|c\L taken in Sect(c\L ,E), and we shall henceforth
drop the restriction notation for X•.

Because the category c\L has an initial object,

lim←−c\L Resc(lim←−
c\L
I

X•) ∼= (lim←−
c\L X•)(c

id→ c) ∼= (lim←−
L X•)(c),

so, thanks to Lemma 1.44, our formula is just another way to write the limit in Sect(L ,E).

Suppose r : c → d is a R-map. We then need to construct Y (r) : Y (c) → Y (d). The
semifibration structure implies the necessity to construct an E(d)-map r!Y (c) → Y (d) for
some opcartesian map Y (c) → r!Y (c). We note that for each L -morphism l : d → d′ the
factorisation system of C implies the existence of a unique diagram

c
r
- d

c′

k
? t

- d′

l
?

(1.7 )
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with vertical arrows in L and horizontal arrows in R. In terms of undercategories, we can
say that there is an induced functor

F : d\L → c\L , (l : d→ d′) 7→ (k : c→ c′).

As usual, given any functor G : c\L → M we have a natural map between limits
lim←−c\L G → lim←−d\L F ∗G, provided they exist. Thus, we see that in order to construct a
map f1 in

r! lim←−c\L Resc(lim←−
c\L
I

X•)
f1−→ lim←−d\L Resd(lim←−

d\L
I

X•)

we can attempt instead to construct another map f2 in

r! lim←−d\L F ∗Resc(lim←−
c\L
I

X•)
f2−→ lim←−d\L Resd(lim←−

d\L
I

X•).

In turn, due to the universal property of limits, we may instead try to find a map f3 in

lim←−d\L r!F
∗Resc(lim←−

c\L
I

X•)
f3−→ lim←−d\L Resd(lim←−

d\L
I

X•).

We can now leave out lim←−d\L and attempt to construct instead the morphism f4 of functors

r!F
∗Resc(lim←−

c\L
I

X•)
f4−→ Resd(lim←−

d\L
I

X•).

Using the notation of Diagram (1.7 ), on l : d→ d′, the map f4 would yield

r!k
∗(lim←−

c\L
I

X•)(c
k→ c′)

f4(l)−→ l∗(lim←−
d\L
I

X•)(d
l→ d′).

Remembering the base-change (Proposition 1.40) morphism r!k
∗ → l∗t!, and the equalities

(lim←−
c\L
I

X•)(c
k→ c′) = (lim←−

L
I
X•)(c

′)

of Lemma 1.44 and the like for d, d′, we see that instead of f4 we may construct maps

l∗t!(lim←−
L
I
X•)(c

′)
f5(l)−→ l∗(lim←−

L
I
X•)(d

′)

or even simpler, t!(lim←−
L
I
X•)(c

′) → (lim←−
L
I
X•)(d

′). Examining t!(lim←−
L
I
X•)(c

′), we witness,
naturally, that there are maps

t!(lim←−
L
I
X•)(c

′)→ t!Xi(c
′)→ Xi(d

′)

with first arrow being a t! of the limit projection, and the second given by the section structure
of Xi. We assemble these maps together to get f5(l) for each l : d→ d′, and in turn, f4, f3, f2

and f1.

This defines Y (r) : lim←−X•(c) → lim←−X•(d) for R-maps of C. The factorisation structure
on C and a tedious verification (which goes through given all the maps in the reasoning above
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are canonical in one way or another) then permits to see that c 7→ Y (c) is indeed a section of
E→ C that has the required universal property. �

Recall that F is a right-closed factorisation functor (Definition 1.37) if for any c → F (c′)

there is a factorisation
c

l−→ F (c′′)
F (r)−→ F (c′)

with r : c′′ → c′ belonging to R′ ⊂ C′. This implies that for each map r : c1 → c2 of R we
have the following diagram

c1\L ′ Fc1- c1\L

c2\L ′

rL ′
6

Fc2- c2\L

rL
6

with functors rL ′ , rL given by factoring the morphisms. One has to be careful about the
pullbacks of E → C to this diagram. If we denote by π1 : c1\L → C, π2 : c2\L → C the
evident projections, then the factorisations

c1
r
- c2

d1

k
? t

- d2

l
?

(1.8 )

which define rL as the assignment l 7→ k, imply that there is a natural transformation τ :

π1rL → π2 with components, given by maps like t in the diagram above, lying in R.

Lemma 1.45. Let p : E→ C be a semifibration over (C,L ,R) and F,G : D→ C be two functors
taking values in L , and τ : F → G be a natural transformations with components in R. Then

1. both F ∗E→ D and G∗E→ D are prefibrations,

2. the assignment (X, d, F (d) = p(X)) 7→ (τ(d)!X, d) has the property that p(τ(d)!X) =

G(d) and defines a (lax) morphism of fibrations τ! : F ∗E→ G∗E over D,

3. there is an induced functor τ! : Sect(D, F ∗E) → Sect(D, G∗E) on the categories of sections.
Moreover, for each X ∈ Sect(C,E), there is a natural (in X) map τ!F

∗X → G∗X .

4. Let H : D′ → D be a functor, and assume that there are right adjoints,

H∗F : Sect(D, F ∗E) � Sect(D′, F ∗E) : HF
∗ ,

H∗G : Sect(D, G∗E) � Sect(D′, G∗E) : HG
∗

for the restriction functors H∗F , H
∗
G. Then there is a natural map

τ!H
F
∗ −→ HG

∗ τ
′
!

where τ ′! : Sect(D′, H∗F ∗E) → Sect(D′, H∗G∗E) is the functor induced as in previous
paragraph.
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Proof. The first statement is clear. For the second we are left to prove that the assignment
X 7→ τ(d)!X is indeed a morphism of prefibrations. For a map f : d → d′, we can draw the
following square

Fd′
τ(d′)
- Gd′

Fd

Ff
? τ(d)

- Gd

Gf
?

(1.9 )

Using the fibrewise-cartesian factoring on F ∗E, it remains to see what happens to the cartesian
maps Ff∗Y → Y , p(Y ) = Fd′. We observe that the base-change for the diagram above
implies the existence of the map

τ(d)!Ff
∗Y −→ Gf∗τ(d′)!Y.

Choosing (or, rather, remembering) a cartesian map Gf∗τ(d′)!Y → τ(d′)!Y , we get the com-
position

τ(d)!Ff
∗Y −→ Gf∗τ(d′)!Y → Gf∗τ(d′)!Y → τ(d′)!Y

needed for constructing the functor τ! : F ∗E→ G∗E.

The functor τ! of the third statement is simply induced by the post-composition with the
functor τ! of the second statement. The existence of the natural family of maps τ!F

∗X → G∗X

happens for the following reason: on an object d ∈ D, the map τ(d)!X(F (d)) → X(G(d)) is
supplied by the section structure of X along the R-map τ(d) : F (d)→ G(d).

For the fourth statement, consider the diagram

Sect(D, F ∗E)
H∗F- Sect(D′, F ∗E)

Sect(D, G∗E)

τ!
? H∗G- Sect(D′, G∗E)

τ ′!
?

and observe by explicit check that it commutes up to an isomorphism. Hence the sought-after
map

τ!H
F
∗ −→ HG

∗ τ
′
!

is given by the usual base-change argument. �

Remark 1.46. The functor τ! : F ∗E → G∗E takes a cartesian maps to cartesian whenever the
base-change map for (1.9 ) is an isomorphism.

We would now like to prove a statement about adjoints similar to Proposition 1.43. Namely,
given a semifibration E → C and a right-closed functor F : D → C, we would like to deduce
the existence of a right adjoint to the pullback functor F ∗ : Sect(C,E) → Sect(C,E) from
assuming the existence of one for F ∗L : Sect(L ,E)→ Sect(L ′,E). However, we shall need to
require some additional properties, which will make harmless the passage to comma categories.
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Definition 1.47. In the situation above, we say that pull-back F ∗L admits a pointwise right
adjoint if

1. the functor F ∗L : Sect(L ,E)→ Sect(L ′,E) admits a right adjoint FL ,∗,

2. for each c ∈ L , the pull-back F ∗c : Sect(c\L ,E) → Sect(c\L ′,E) along the induced
functor Fc : c\L ′ → c\L , admits a right adjoint Fc,∗ and moreover the natural base-
change map π∗FL ,∗ → Fc,∗π

′∗ arising from the square

L ′ FL- L

c\L ′

π′
6

Fc- c\L

π
6

is an isomorphism.

In other words, this means that Fc,∗π′∗X can be computed as FL ,∗X and then restricted
again to the comma category.

Proposition 1.48. Let F : C′ → C be a right-closed factorisation functor, and E → C a fibrewise
complete semifibration over C. Assume that the functor F ∗L : Sect(L ,E) → Sect(L ′,E) admits a
pointwise right adjoint FL ,∗ in the sense of Definition 1.47. Then the functor F ∗ : Sect(C,E) →
Sect(C,E) admits a right adjoint F∗ such that the induced 2-diagram

Sect(D,E)
F∗- Sect(C,E)

⇒

Sect(L ′,E)
? FL ,∗- Sect(L ,E),

?

(with vertical arrows given by restrictions), is in fact commutative up to an isomorphism.

We can thus make conclusions about F∗ by passing to the left categories and using the
functor FL ,∗.

Proof. We shall proceed in a manner similar to Proposition 1.43. For c ∈ C andX ∈ Sect(C′,E),
put

Y (c) := F∗X(c) = lim←−c\L RescFc,∗(X|c\L ′)

where Fc : c\L ′ → c\L is the functor induced from F . Indeed, Y (c) ∼= FL ∗X(c), but we
will need such a presentation for Y for the proof to work.

Assume given a map r : c1 → c2. We need to construct

r! lim←−c1\L Resc1Fc1,∗(X|c1\L ′)
f1−→ lim←−c2\L Resc2Fc2,∗(X|c2\L ′)
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Since F is right-closed, we have the following diagram

c1\L ′ Fc1- c1\L

c2\L ′

rL ′
6

Fc2- c2\L

rL
6

with functors rL ′ , rL given by factoring the morphisms. One has to be careful about the
pullbacks of E → C to this diagram. If we denote by π1 : c1\L → C, π2 : c2\L → C the
evident projections, then the factorisations

c1
r
- c2

d1

k
? t

- d2

l
?

(1.10)

imply that there is a natural transformation τ : π1rL → π2 with components, given by maps
like t in the diagram above, lying in R.

We can thus attempt instead to construct another map f2 in

r! lim←−c2\L r∗LResc1Fc1,∗(X|c1\L ′)
f2−→ lim←−c2\L Resc2Fc2,∗(X|c2\L ′).

In turn, due to the universal property of limits, we may instead try to find a map f3 in

lim←−c2\L r!r
∗
LResc1Fc1,∗(X|c1\L ′)

f3−→ lim←−c2\L Resc2Fc2,∗(X|c2\L ′).

We can now leave out lim←−c2\L and construct instead the morphism f4 of functors

r!r
∗
LResc1Fc1,∗(X|c1\L ′)

f4−→ Resc2Fc2,∗(X|c2\L ′).

Using the notation of the diagram (1.10) coming from the factorisation on C, the map f4 would
yield

r!k
∗Fc1,∗(X|c1\L ′)(c1

k→ d1)
f4(l)−→ l∗Fc2,∗(X|c2\L ′)(c2

l→ d2).

Remembering the base-change morphism r!k
∗ → l∗t!, we see that instead of f4 we may con-

struct maps

t!Fc1,∗(X|c1\L ′)(c1
k→ d1)

f5(l)−→ Fc2,∗(X|c2\L ′)(c2
l→ d2).

We note that Fc1,∗(X|c1\L ′)(c1
k→ d1) = r∗LFc1,∗(X|c1\L ′)(c2

l→ d2), where r∗L is now the
pullback on sections, and see that we are looking for f5 in

τ!r
∗
LFc1,∗(X|c1\L ′)

f5−→ Fc2,∗(X|c2\L ′)

with τ! induced from τ : π1rL → π2 by Lemma 1.45.
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There is a base-change map
r∗LFc1,∗ → F ′c2,∗r

∗
L ′

with components lying the category Sect(c2\L , (π1rL )∗E). The prime over the functor F ′c2,∗
denotes that it is adjoint for the sections of the prefibration (π1rL )∗E and not π∗2E. Now, apply
τ! and get

τ!r
∗
LFc1,∗ → τ!F

′
c2,∗r

∗
L ′ → Fc2,∗τ

′
! r
∗
L ′

with the second arrow existing due to the fourth statement of Lemma 1.45, with τ ′ : π′1r
′
L ′π

′
2 be

the natural transformation between the evident projections π1 : c1\L ′ → C′, π2 : c2\L ′ → C′

and rL ′ .

Examining what is remaining we see that to get f5, we may as well construct f6 in

Fc2,∗τ
′
! r
∗
L ′X|c1\L ′

Fc2,∗f6−→ Fc2,∗X|c2\L ′ ,

or, removing Fc2,∗,

τ ′! r
∗
L ′X|c1\L ′

f6−→ X|c2\L ′ ,

This map, is, however, simply there by the third statement of Lemma 1.45, since X is a factual
section of a semifibration. If we consider the factorisation diagram defining rL ′ ,

c1
r
- c2

F (d1)

a
? F (e)

- F (d2)

b
?

(1.11 )

then the map f6(b) corresponds to F (e)!X(F (d1)) → X(F (d2)). We thus get f6 and reverse
all the discussion to get f1. �

Corollary 1.49. Let F : D → C be a factorisation right-closed functor such that its restriction
FL : L ′ → L is a closed immersion of Noether categories. Then for any fibrewise-complete
semifibration E → C, there is an adjunction F ∗ : Sect(C,E) � Sect(D,E) : F∗, and the right
adjoint can be calculated by restricting to the left parts of the factorisation systems.

Proof. The right adjoint for FL : L ′ → L exists thanks to Proposition 1.31 and is pointwise
due to Proposition 1.32. �

2 Reedy model structures

2.1 Model categories and localisation

Definition 2.1. A homotopical, or relative, category, or a localiser, is a pair (M,W) of a category
M and a subcategory W containing all objects of M, called the category of weak equivalences.
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The definition of a model category used in this work is the following one:

Definition 2.2. A category M carries a model structure, or is a model category, if there are given
three subcategories (W,C,F) containing all objects of M, called respectively the subcategory of
weak equivalences, cofibrations and fibrations, such that the following list of axioms is satisfied.

M1 (Property of M) the category M admits small limits and colimits.

M2 The subcategoryW satisfies 3-for-2: given two composable maps f, g, if any two elements
of the set {f, g, gf} are morphisms of W, then so is the third.

M3 The subcategories W,C,F are stable by retracts: given a commutative diagram

A
i1- X

r1- A

B

f
? i2- Y

g
? r2- B

f
?

with r1i1 = idA and r2i2 = idB , if g belongs to W (respectively to C,F), then so does f .

M4 In a commutative diagram

A
a
- X

B

i
? b

- Y

f
?

with i in C and f in F, whenever any of i, f is also in W, there exists a map p : B → X

with pi = a and fp = b.

M5 Any morphism p : X → Y can be factored as X
i→ Z

f→ Y with i in C and f in F ∩W,

and as X
j→ Z ′

g→ Y , with j in C ∩W and g in F.

A functor F : M→ N of model categories is called left-derivable if it preserves cofibrations
and trivial cofibrations, and left Quillen if in addition it is a left adjoint. The notions of right-
derivable and right Quillen functors are defined dually.

Definition 2.3. Let (M,W) be a homotopical category. The localisation of M along W [8, 17],
is the category which we denote W−1M or HoM, together with a functor p : M → W−1M

such that any functor F : M → N which sends W to isomorphisms of N, factors through p.
The factorisation is unique up to a canonical isomorphism.

Proposition 2.4 ([8, 12, 17]). For a model categoryM, the localisation HoM ofM alongW exists
and is of the same (set-theoretical) size asM.

The higher-categorical localisation is revisited in Section 3.
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2.2 Semifibrations over Reedy categories

Definition 2.5. Let R be a Reedy category. A model semifibration over R is a functor E → R

such that it is a semifibration over (R,R−,R+), each fibre E(x) is a model category, and

1. the transition functors along R− are right derivable,

2. the transition functors along R+ left derivable.

We shall prove that under some admissibility conditions, the category of sections Sect(R,E)

carries a model structure.

Recall [12, 17] that for each object x ∈ R, we have associated latching and matching cate-
gories Lat(x) and Mat(x). Let E → R be a semifibration. Then for each x ∈ R, there are
natural restriction functors Lx : E|Lat(x) → E(x) and Rx : E|Mat(x) → E(x). Indeed, by Lx,
an object X ∈ E|Lat(x) living over f : y → x is sent to its opcartesian image f!X ∈ E(x), and
dually for Rx.

There are choices involved in constructing Lx and Rx; both functors are unique up to a
natural isomorphism.

Definition 2.6 (cf Definition 1.25). For S ∈ Sect(R,E) and x in R, we define the latching
object of S at x to be the following colimit:

L xS := lim−→Lat(x)
Lx ◦ S|Lat(x).

The matching object of S at x is defined to be the following limit:

M xS := lim←−Mat(x)
Rx ◦ S|Mat(x).

The latching and matching object constructions are suitably functorial. Denote by R<n

the subcategory of objects of degree less than n. We see that L x and M x define functors
Sect(R<n,E) → E(x). Now, consider a section S : R<n → E. Then for each z of degree
(up to) n, the map L zS → M zS is canonically determined. To see this, we need to supply,
for each degree-raising map g : x → z and each degree-lowering map k : z → t, a map
g!S(x)→ k∗S(t). Since R is a Reedy category, we have the following square

x
f
- y

z

g
?

k
- t

h
?

in which the vertical maps raise the degree and the horizontal maps lower the degree. Propo-
sition 1.40 then implies that we have a natural transformation g!f

∗ → k∗h!. The sought-after
map is then defined as the composition

g!S(x)→ g!f
∗S(y)→ k∗h!S(y)→ k∗S(t)
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with S(x) → f∗S(y) and h!S(y) → S(t) existing because S is a section on R<n. Combining
different maps g!S(x)→ k∗S(t), we get the map from the colimit to the limit, that is, L zS →
M zS.

For a section S : R → E defined on the whole of R, we are supplied with maps L xS →
S(x)→M xS in the fibre E(x) which can be seen to factor the canonical map L xS →M xS.

Proposition 2.7. Let E → R be a semifibration and S : R<n → E be a section defined on objects
of degree less than n. Then an extension of S to a section on objects x of degree n is equivalent to
factoring the canonical maps L xS →M xS as L xS → S(x)→M xS for each x.

Proof. Given any non-trivial map x → y between two objects of degree n, we factor it as
x→ z → y, and the corresponding map S(x)→ S(y) is constructed as

S(x)→M xS → S(z)→ L yS → S(y),

with the middle maps well defined as degz < n. �

As mentioned above, the assignments S 7→ L xS and S 7→ M xS define functors from
Sect(R,E) to E(x). Thus, given a map f : S → T of two sections S, T ∈ Sect(R,E), we get,
naturally, two following squares

L xS - S(x) - M xS

L xT
?

- T (x)
?
- M xT

?

Definition 2.8. A map of sections f : S → T is a

1. Reedy cofibration if the map L xT
∐

L xS
S(x) → T (x) is a cofibration in E(x) for each

x ∈ R.

2. Reedy fibration if the map S(x) → M xS
∏

M xT
T (x) is a fibration in E(x) for each

x ∈ R.

3. Reedy weak equivalence if it is a fibrewise weak equivalence.

Definition 2.9. Let R be a Reedy category and E → R a model semifibration. We call
E → R left-admissible if the following holds. Let α : A → B be a map of sections such that
L xB

∐
L xA

A(x) → B(x) is a (trivial) cofibration for each x ∈ R. Then for any y ∈ R, the
map L y(α) : L yA→ L yB is also a (trivial) cofibration.

Dually, one can define a right-admissible model semifibration. A semifibration is called
admissible if it is both left- and right-admissible.

We will show that under the left admissibility condition, the trivial Reedy cofibrations are
exactly the maps A → B such that L xB

∐
L xA

A(x) → B(x) is a (trivial) cofibration for
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each x ∈ R. The left admissibility condition can be interpreted as ensuring that the functors
L x : Sect(R,E)→ E(x) are left derivable.

Lemma 2.10. A model semifibration E → R is left-admissible if for each x ∈ R, either of the
following holds:

1. the restriction E|Mat(x) → Mat(x) is a fibration (and not simply a prefibration) whose
transition functors preserve limits,

2. the categoryMat(x) is a disjoint union of categories possessing initial objects.

A dual result is valid for right-admissibility.

Proof. For each y in R, there are two possible scenarios.

1. The functor E|Lat(y) → Lat(y) is an opfibration (not merely a preopfibration) whose
transition functors preserve colimits. The restriction to the fibre E(y) provides us with a
functor L : Sect(Lat(y),E)→ Fun(Lat(y),E(y)). A section S ∈ Sect(Lat(y),E) is sent
to

L(S) : (z
f→ y) ∈ Lat(y) 7→ L(S)(f) ∼= f!S(z) ∈ E(y).

The category Fun(Lat(y),E(y)) has a well-known Reedy structure [17]. Let us compute
the value LatfL(S) of the latching object functor at f : z → y (we write Lat to distin-
guish from L which we used for sections). Abusing slightly the notation, one can see
that, naturally in S,

LatfL(S) ∼= lim−→g:t→z∈Lat(z) L(S)(t
g→ z

f→ y) ∼= lim−→t→z∈Lat(z)(fg)!S(t)

∼= lim−→t→z∈Lat(z) f!g!S(t) ∼= f!L z(S),

where the last two isomorphisms are consequences of the given admissibility condition.
One can use this and similar computations to verify that the image of the map α : A→ B

in Fun(Lat(y),E(y)) is a (trivial) Reedy cofibration. Given that L yA ∼= lim−→Lat(y)
L(A),

the necessary result follows from the classical case [17].

2. The category Lat(y) is a disjoint union of categories with terminal objects. Any colimit
over a such category is a coproduct of evaluations at terminal objects of the components.
If we suppose that the assertion of the lemma was proven by induction for lesser degrees,
the map L y(α) : L yA→ L yB will be represented as a coproduct

∐
Xi →

∐
Yi, where

each map Xi → Yi is a (trivial) cofibration. Thus L y(α) is also a (trivial) cofibration. �

Theorem 2.11. Let R be a Reedy category and E→ R an admissible model semifibration. Then the
category of sections Sect(R,E) carries a model structure given by Reedy cofibrations, Reedy fibrations
and Reedy weak equivalences of Definition 2.8.
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Remark 2.12. The admissibility condition is used in the proof of Lemma 2.18. Without admis-
sibility, many aspects of the Reedy proof do indeed go through, but one has no control over
the intersection of the classes of maps, and consequently, over factorisations and (co)fibrant
replacements.

The condition (1.) and its dual of Lemma 2.10 has the property that if it is true for an
object x, then it is also true for all objects y in its matching (or latching) category.

The condition (2.) and its dual of Lemma 2.10 are related to the notion of fibrant and
cofibrant constants [8]. The reason that it appears in our setting is somehow dual to that of [8];
see Lemma 2.18 for details.

Lemma 2.13. The Reedy weak equivalences are stable under retracts and satisfy the “three-for-two”
axiom.

Proof. Clear, by considering what happens in each fibre. �

Lemma 2.14. Let f : S → T be a map of sections such that f satisfies one of the properties below:

• For each x ∈ R, the map L xT
∐

L xS
S(x)→ T (x) is a cofibration,

• For each x ∈ R, the map L xT
∐

L xS
S(x)→ T (x) is a trivial cofibration,

• For each x ∈ R, the map S(x)→M xS
∏

M xT
T (x) is a fibration,

• For each x ∈ R, the map S(x)→M xS
∏

M xT
T (x) is a trivial fibration.

Then any retract of f also satisfies such a property.

Proof. Let

A
i1- X

r1- A

B

f
? i2- Y

g
? r2- B

f
?

be a retract diagram in Sect(R,E). The assignment A 7→ L xA is functorial in A, so it
preserves retracts. Then, for x ∈ R, there is a diagram D1

A(x)
i1(x)
- X(x)

r1(x)
- A(x)

L xA

6

L xi1- L xX

6

L xr1- L xA

6

L xB
? L xi2- L xY

? L xr2- L xB
?
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which can be viewed as a retract diagram in Fun(I,E(x)), where I is the category 0← 1→ 2.
There is also a retract diagram D2

B(x)
i2(x)
- Y (x)

r2(x)
- B(x)

For a category D, let Ret(D) be the category of retract diagrams: its objects are pairs of

arrows C
i→ D

r→ C with r ◦ i = idC . For any small category J the constant diagram functor
c∗J : D → Fun(J,D) induces a functor Ret(c∗J) : Ret(D) → Ret(Fun(J,D)). If D admits
small colimits, this functor has a left adjoint Ret(lim−→J

) : Ret(Fun(J,D))→ Ret(D).

In our case, D = E(x) has small colimits and J = I . In addition, D1 ∈ Ret(Fun(I,E(x)))

and D2 ∈ Ret(E(x)). The retract diagram for maps f : A → B and g : X → Y gives
us a morphism D1 → Ret(c∗I)(D2). Taking the adjoint to this map, we get a map of retract
diagrams Ret(lim−→I

)(D1)→ D2, which renders the relative latching map of f at x,

L xB
∐

L xA

A(x)→ B(x),

as a retract of the relative latching map of g at x,

L xY
∐

L xX

X(x)→ Y (x).

Thus if the latter map is a (trivial) cofibration, then so is the former. For the relative matching
maps, the proof is dual. �

Case of a direct category

We first consider the case when R = R+ is a direct Reedy category. In this case E → R is
an actual opfibration. Similarly, one can consider R = R−, and work with a fibration over R.

Proposition 2.15. Reedy cofibrations, objectwise fibrations and objectwise weak equivalences form a
model structure on Sect(R,E).

First we need to address the limit-colimit axiom.

Lemma 2.16. For R = R+, the category Sect(R,E) admits limits and colimits.

Proof. The existence of limits is Proposition 1.18. The colimits are given by the dual of
Proposition 1.27 since R+ is an Artin category. �

Lemma 2.17. Suppose given a diagram of sections

A - S

B

f
?

- T

p
?
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with p and objectwise fibration (respectively trivial fibration). If for each x ∈ R, the map

L xB
∐

L xA

A(x)→ B(x) (2.1 )

is a trivial cofibration (respectively a cofibration), then the diagram admits a lift.

Proof. Proceed by induction on degree. For degx = 0, L x(A) is the initial object of E(x) (and
the same for B), so the map (2.1 ) equals A(x) → B(x). The lift then exists simply because
E(x) is a model category.

For degx = n, assume that we defined the lift for all lesser degrees. For each map α :

y → x with degy < n, we have the assumed lift hy : B(y) → S(y), and the composition
B(y) → S(y) → S(x) can be factored as α!B(y) → S(x), and that in turn induces the map
L xB → S(x). We then get the following diagram,

L xB
∐

L xA

A(x) - S(x)

B(x)

f

?
- T (x)

p

?

and we can find the necessary lift (by also remembering A(x)→ L xB
∐

L xA
A(x)). �

Lemma 2.18. Let α : A → B be such that L xB
∐

L xA
A(x) → B(x) is a (trivial) cofibration

for each x ∈ R. Then for any y ∈ R, the maps L y(α) : L yA → L yB and αy : A(y) → B(y)

are (trivial) cofibrations.

Proof. For y ∈ R, note that the map αy : A(y)→ B(y) equals

A(y)→ L yB
∐

L yA

A(y)→ B(y).

The second map is a (trivial) cofibration by condition. It thus remains to examine the map
L y(α) : L yA → L yB. According to Definition 2.9, this map is a (trivial) cofibration, as
required. �

Corollary 2.19. Let A → B be such that L xB
∐

L xA
A(x) → B(x) is a trivial cofibration for

each x ∈ R. Then A→ B is a Reedy cofibration and a weak equivalence. �

Proposition 2.20. Let A → C be a map in Sect(R,E). Then it can be factored as A → B → C

where

• the map A → B is such that L xB
∐

L xA
A(x) → B(x) is a cofibration (respectively a

trivial cofibration) for each x ∈ R,
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• the map B → C is an objectwise trivial fibration (respectively a fibration).

The factorisations are functorial whenever this is the case for each E(x).

Proof. Let us do the cofibration and trivial fibration part, the second part being dual. Factor
A(x) → B(x) as A(x) → B(x) → C(x) for each x of degree zero. Assume now that the
factorisation is there for each y ∈ R of degree less than n. For x with degx = n, we have the
diagram

L xA - L xB

A(x)
?

- C(x)
?

with L xB → C(x) defined with the use of the maps B(y) → C(y) → C(x). We thus get a
map A(x)

∐
L xA

L xB → C(x), which we factor (if possible, functorially) as

A(x)
∐

L xA

L xB → B(x)→ C(x).

The maps L xB → B(x) complete B to a section on R≤n. Proceeding by induction, we get
the desired factorisation. �

Corollary 2.21. A map f : S → T is a trivial Reedy cofibration iff the map

L xT
∐
L xS

S(x)→ T (x)

is a trivial cofibration for each x ∈ R.

Proof. Take a trivial Reedy cofibration f : S → T and factor it using Proposition 2.20 as

S
g→ U

h→ T so that L xU
∐

L xS
S(x)→ U(x) is a trivial cofibration. We then see that f is a

retract of g. �

This proves the existence of the model structure on Sect(R,E) for a direct category R.

Finishing the Proof

We now turn to the case when R is an arbitrary Reedy category.

Lemma 2.22. The category Sect(R,E) is bicomplete.

Proof. By Lemma 2.16 and its dual, we have that both Sect(R+,E) and Sect(R−,E) are
bicomplete. The result then follows from Proposition 1.43. �
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Lemma 2.23. A map X → Y is

• a trivial Reedy cofibration iff for each x ∈ R, the map L xY
∐

L xX
X(x) → Y (x) is a

trivial cofibration,

• a trivial Reedy fibration iff for each x ∈ R, the mapX(x)→ Y (x)
∏

M xY
M xX is a trivial

fibration.

Proof. For the first part, note that X → Y is a Reedy cofibration iff it is such when viewed
as a morphism of sections in Sect(R+,E), since the Reedy cofibration condition is formulated
objectwise in R. It is, also, a weak equivalence iff it is such when restricted to a morphism of
sections over R+, for the same reason. We then use Corollary 2.21 to get the result. The second
part is proven in a dual manner. �

Proposition 2.24. Suppose given a diagram of sections

A - S

B

f
?

- T

p
?

where f : A → B is a Reedy cofibration and p : S → T is a Reedy fibration. Then a lift exists
whenever f or p is trivial.

Proof. By induction we can assume having supplied a lift for y ∈ R of degree less than n.
Given an object x of degree n, we can draw the following diagram

A(x) - A(x)
∐

L xA

L xB - S(x)

B(x)
?

-

-

T (x)
∏

M xT

M xS

?

- T (x).

-

Just as in the classical case, a lift in the middle square of this diagram (which exists whenever
f or p is trivial) determines the looked-for lift B → S on objects of degree n. �

Proposition 2.25. Let A→ C be a map in Sect(R,E). Then it can be factored as A
i→ B

p→ C ,
with i a Reedy cofibration and p a Reedy fibration, such that either i or p is trivial. The factorisation
is functorial whenever each E(x) admits functorial factorisations.

Proof. Assume again that, by induction, we have constructed the factorisation A(y)→ B(y)→
C(y) for objects y ∈ R of degree less than n. For x of degree n, there is the following diagram

L xA - A(x) - M xB

L xB
?

- C(x)
?
- M xC

?
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which exists because of the inductive assumption and provides us with the following map

L xB
∐

L xA

A(x)→ C(x)
∏

M xC

M xB.

Factoring it (using the model structure of E(x)) as

L xB
∐

L xA

A(x)→ B(x)→ C(x)
∏

M xC

M xB.

which, together with maps L xB → B(x) and B(x) →M xB, yields the desired extension of
the factorisation to the objects of degree n. �

We have thus proven the existence of the Reedy model structure on Sect(R,E).

Lemma 2.26. Let X → Y be a Reedy cofibration (respectively a fibration). Then for each x ∈ R,
the map X(x)→ Y (x) is a cofibration (respectively a fibration).

Proof. Direct consequence of Lemma 2.18. �

2.3 Cofibrant generation of Reedy structures

In this subsection we treat the situation when the semifibration E → R has cofibrantly
generated model categories as fibres. One may ask in this case if the model category of sections
is cofibrantly generated.

The Reedy category case is unorthodox in the sense that we already know the model
structure, while the techniques of cofibrantly generated categories usually start with a set of
generating cofibrations and a well-behaved class (large set) of weak equivalences in a presentable
category to obtain a combinatorial model structure, as per Smith’s theorem [18, Proposition
A.2.6.8].

For the purposes of this subsection, let us introduce the following definition. As usual, write
[1] for the arrow category 0→ 1 and [2] = 0→ 1→ 2.

Definition 2.27. A model category M has accessible factorisations, if the underlying category
of M is presentable, and both (fibration-trivial cofibration) and (trivial fibration-cofibration)
factorisations are functorial and accessible, when viewed as functors from Fun([1],M) to
Fun([2],M).

Any combinatorial model category has accessible factorisations [3, Proposition 1.10]. We
would like to investigate when the converse implication holds. For our purposes, the following
shall suffice.

Lemma 2.28. Let M be a model category with accessible factorisations, such that the subcategories
of trivial fibrations and fibrations are accessible and accessibly embedded in Fun([1],M). ThenM is
cofibrantly generated, and hence is combinatorial.
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Proof. Choose a regular cardinal λ such that the following holds:

1. The categories M,Fun([1],M) and the subcategory Fib ⊂ Fun([1],M) consisting of
fibrations (and a similar category for trivial fibrations) is λ-accessible, and the functor
Fib→ Fun([1],M) preserves λ-presented objects.

2. For each arrow X → Y where X and Y are λ-presentable (or λ-compact in the termi-
nology of [18]), its factorisations

X ⊂
∼
- Z -- Y and X ⊂ - Z ′

∼
-- Y

have the property that both Z and Z ′ are λ-presentable. This is possible due to the
accessible factorisations condition, following the same reasoning as in [7, Proposition
7.2].

The category Fun([1],M) is seen [18, Proposition 5.4.4.3] to be generated by the (essentially
small) subcategory of arrows A→ B where A and B are λ-presentable. We claim that the trivial
cofibrations are generated by the subset WCofλ consisting of all trivial cofibrations between
λ-presentable objects.

It will suffice to check that any map f : X → Y having the right lifting property with
respect to WCofλ is a fibration. As an object of M[1] = Fun([1],M), the morphism f is a
colimit of λ-presentable objects over a small (modulo choice), λ-filtered diagram M

[1]
λ /f . There

is also a diagram Fibλ/f consisting of all λ-presentable objects of Fib together with a map in
M[1] to f . Since Fib is accessibly embedded we have a natural fully faithful functor

F : Fibλ/f →M
[1]
λ /f

We claim that F is cofinal. For this, just as in [1, Theorem 4.8], it is enough to verify that for
any g → f in M

[1]
λ /f there exists a map g → F (h) over f for some h ∈ Fibλ/f .

Factoring g : A→ B as a trivial cofibration followed by fibration, we get the diagram

A ⊂
∼
- A′

B

g
?

=
- B

F (h)
??

the object A′ is λ-presentable just like A and B, so the fibration F (h) : A′ � B is λ-presentable
in Fib as well. Moreover any map g → f can be extended in a compatible way to F (h) → f ,
using the assumption that f has the right lifting property along trivial cofibrations between λ-
presentable objects. This concludes the proof of cofinality of F , and hence also of λ-filteredness
of Fibλ/f . We then use the fact that Fib is closed under λ- filtered colimits to conclude that
f ∈ Fib. The case of trivial fibrations is treated similarly. �
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Corollary 2.29. LetM be a model category with underlying category presentable. Assume that both
of the following hold:

i. The (cofibration-trivial fibration) factorisation is functorial and accessible,

ii. The full subcategoryWFib ⊂M[1] of trivial fibrations is accessible and accessibly embedded.

Assume further that either of the following holds:

1. The (trivial cofibration- fibration) factorisation is functorial and accessible, and the full sub-
category Fib ⊂M[1] of fibrations is accessible and accessibly embedded, or

2. The full subcategoryW ⊂M[1] of weak equivalences is accessible and accessibly embedded.

ThenM is combinatorial.

Proof. Combine the precedent lemma together with [18, Corollary A.2.6.9] �

Proposition 2.30. Let E → R be an admissible model semifibration over a Reedy category R.
Assume that each E(x) is combinatorial and all transition functors of the semifibration are accessible.
Then the model category of sections Sect(R,E) is combinatorial.

Proof. The category R is a directed colimit of its subcategories R≤n. Let us first analyse the
case of finite degree.

For R0, the category Sect(R0,E) is the product
∏
x E(x) of the fibre categories over all

objects of degree zero. It is, hence, combinatorial.

For R≤n, observe that we have the following pullback diagram

Sect(R≤n,E) -
∏

degx=n

E(x)[2]

Sect(R<n,E)
?

-
∏

degx=n

E(x)[1].

?
(2.2)

The upper horizontal functor is given by S 7→ L xS → S(x) → M xS for all objects x of
degree n. The bottom horizontal functor is similarly given by S 7→ L xS → M xS. The
vertical functors are the evident restrictions.

Both categories
∏
x E(x)[2] and

∏
x E(x)[1] are presentable. By induction, we can assume

that Sect(R<n,E) are combinatorial and that both L x and M x are accessible functors (the
initialization is given by ∅ = R−1 ⊂ R0). This implies that the horizontal functors in (2.2) are
accessible. We thus see that Sect(R≤n,E) is accessible, and hence presentable. We also infer,
by induction, that sufficiently large filtered colimits are computed fibrewise in Sect(R≤n,E).
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We shall not treat E(x)[1] and E(x)[2] as model category. However, consider the full subcat-
egory Fib(x)[2] ⊂ Fun([1],E(x)[2]) given by all diagrams

A - B - C

X
?

- Y
?

- Z
?

such that both C → Z and B → Y ×Z C are fibrations. The category Fib(x)[2] is the
pullback, along the inclusion [1] ⊂ [2] skipping 0, of the subcategory of fibrations for the
inverse Reedy model structure on each E(x)[1]. The latter is well known to be combinatorial
(it follows for example from Proposition 2.32 below). Using [18, Corollary A.2.6.9] and the
closure of accessible categories under limits, we obtain that Fib(x)[2] is accessible and accessibly
embedded. In a similar vein, we can define an accessible and accessibly embedded subcategory
Fib(x)[1] ⊂ Fun([1],E(x)[1]) to be given by all diagrams

A - C

X
?

- Z
?

such that C → Z is a fibration.

We then conclude, using the diagram (2.2), that the category of fibrations of Sect(R≤n,E)

(and, similarly, of trivial fibrations) is accessible and accessibly embedded, since we can express
it as a limit of

∏
x Fib(x)[2],

∏
x Fib(x)[1] and the fibrations of Sect(R<n,E) along accessible

functors. This means that the fibrations (and, similarly, trivial fibrations) form an accessible
(and accessibly embedded) subcategory of Sect(R≤n,E)[1]. We also see that the factorisations
in Sect(R≤n,E) are functorial and accessible: they are obtained through the inductive proce-
dure involving lesser degree latching and matching objects, fibred products and pushouts, and
factorisations in the fibres.

Now, given an object y of the successive degree, consider the matching object functor
M y : Sect(R≤n,E)→ E(y). It is obtained as the composition of the restriction to the fibre

Sect(R≤n,E)→ Sect(Mat(y),E)→ Fun(Mat(y),E(y))

with the Mat(y)-limit functor. Bearing in mind that we proved that (sufficiently large) filtered
colimits are computed fibrewise in Sect(R≤n,E), all of these functors are accessible. We thus
obtain that M y is accessible. One can prove similar for L y .

All this shows that for each degree n, the category Sect(R≤n,E) is a combinatorial model
category. The restriction functors Sect(R≤n,E)→ Sect(R≤n−1,E) commute with colimits. Us-
ing the argumentation as before, but with pullbacks of categories replaced by directed colimits,
we obtain that Sect(R,E) = lim←− Sect(R≤n,E) satisfies the conditions of Lemma 2.28. It is
hence combinatorial. �
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We conclude this subsection by considering the case when E → R is a bifibration, that is,
both a Grothendieck fibration and an opfibration. The assumptions of the model semifibration
(which in this case is automatically admissible due to (1.) of Lemma 2.10) imply that for any
f : x→ y, the induced adjunction

f! : E(x) � E(y) : f∗ (2.3 )

is a Quillen pair. In the terminology of [16], we are dealing with a Quillen presheaf.

Let x ∈ R and C be a subcategory of the comma category x\R. It comes equipped with a
natural functor pC : C→ R. This functor induces the following adjunction:

pC,! : Sect(C,E) � Sect(R,E) : p∗C.

The left adjoint exists in the case of a fibrewise cocomplete bifibration and sends S to the
section determined by

pC,!S(y) = lim−→C/y
ResyS|C/y

with Resy : E|C/y → E(y) being the usual restriction functor. On the other hand, there is also
an adjunction

trivC : E(x) � Sect(C,E) : M C.

The functor trivC sends X ∈ E(x) to the section

(f : x→ y) ∈ C 7→ f!X ∈ E(y).

The functor M C is the composition Sect(C,E)→ Fun(C,E(x))→ E(x) where the first functor
is induced by restrictions along cartesian morphisms, and the second is the limit functor. We
thus have the composed adjunction

pC,!trivC : E(x) � Sect(R,E) : M Cp
∗
C.

Lemma 2.31. For a Quillen presheaf E→ R, we have the following:

1. For each object X ∈ E(x), the section

i(X) = px\R,!trivx\RX

satisfies the property
Sect(R,E)(i(X), S) ∼= E(x)(X,S(x)).

2. For each object X ∈ E(x), the section

m(X) = pMat(x),!trivMat(x)X

satisfies the property
Sect(R,E)(m(X), S) ∼= E(x)(X,M xS).
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3. For each object X ∈ E(x), we have a natural map m(X)→ i(X).

Proof. Immediate. �

Proposition 2.32. Let E → R be a Quillen presheaf. Assume that each model category E(x)

is cofibrantly generated, with generating cofibrations denoted Ix and generating trivial cofibrations
denoted Jx. Write

I = {m(B)
∐
m(A)

i(A)→ i(B)|A→ B ∈ Ix, x ∈ R},

J = {m(B)
∐
m(A)

i(A)→ i(B)|A→ B ∈ Jx, x ∈ R}.

Then I and J are sets of generating cofibrations and trivial cofibrations for the model structure of
Theorem 2.11 on Sect(R,E).

Proof. The usual adjunction observation, amounting to the fact that a diagram

m(B)
∐
m(A)

i(A) - S

i(B)
?

- T
?

is the same data as the diagram

A - S(x)

B
?
- T (x)

∏
M xT

M xS

?

�

3 Comparing with higher sections

Definition 3.1. A left model Reedy fibration is a functor p : E → R to a Reedy category that
is a Grothendieck opfibration, a Grothendieck fibration over R−, such that the associated
semifibration (cf Lemma 1.41) is admissible in the sense of Definition 2.9.

Recall the notion of an (∞, 1)-category, which can be modeled using quasicategories (called
“infinity-categories” in [18]). Denote by W ⊂ E the collection of those maps α : X → Y such
that pα is an isomorphism and the induced map (pα)!X → Y is a fibrewise weak equivalence.
Using the localisation in quasicategories [11], localising along W ⊂ E yields an infinity-functor
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Lp : LE → R (we make no distinction between an ordinary category and its nerve in SSet),
which can be chosen to be a categorical fibration. The associated quasicategory of sections
Sect(R, LE) is given by the sub-quasicategory of Fun(R, LE) spanned by those S such that
Lp◦S is an identity; more precisely Sect(R, LE) is the fibre of Lp∗ : Fun(R, LE)→ Fun(R,R)

over the identity functor.

The goal of this subsection is to prove the strictification result, asserting that the infinity-
localisation LSect(R,E) of the category of sections coincides with Sect(R, LE). After proving
this, we shall revisit the case of Quillen presheaves — those E → C that are bifibrations in
model categories and Quillen adjunctions — and show that the strictification holds over an
arbitrary base C.

Remark 3.2. The terminology employed in [18] is different from the one which we have used
up to this point. Lurie uses the term “coCartesian fibration” [18, Definition 2.4.2.1] for what we
would have called “opfibration of quasicategories”, and “Cartesian fibration” for fibrations. We
have chosen to stick to the terminology of [18] when dealing with higher-categorical fibrations,
and we use our terminology for the 1-categorical objects.

We also specify that for us, the term infinity-localisation means a functor F : X→ Y of qua-
sicategories, such that for any quasicategory Z, the induced infinity-functor F ∗ : Fun(Y,Z) →
Fun(X,Z) is full and faithful, and its essential image consists of functors that send the F -
equivalences of X to equivalences of Z. This is not the same meaning as the localisation used
in the setting of presentable infinity-categories [18, Chapter 5].

For any Reedy category, one can introduce the notion of a (transfinite) good filtration {Rβ}
[18, Notation A.2.9.11] for a Reedy category R (a Reedy category in our sense is a Reedy category
in the sense of Lurie). The advantage of a good filtration is that, for an ordinal β, one obtains
Rβ by adjoining a single object to R<β = ∪γ<βRγ .

The key observation [18, Proposition A.2.9.14] for Reedy categories in higher-categorical
setting asserts that the diagram

(R<β/x) ? (x\R<β) - R<β

(R<β/x) ? {x} ? (x\R<β)
?

- Rβ

?

is a homotopy pushout square of quasicategories. We modify this statement slightly.

Proposition 3.3. Let R be a Reedy category, and Rβ be a step of a good filtration obtained from
R<β by adding an object x. Then the following square

Lat(x) ? Mat(x) - R<β

Lat(x) ? {x} ? Mat(x)
?

- Rβ

?
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is a homotopy pushout for the Joyal model structure.

Proof. Observe that the inclusion Lat(x) ⊂ R<β/x is a right adjoint, with the left adjoint
obtained by using the factorisation system. This inclusion is hence homotopy cofinal, as fol-
lows immediately from [18, Theorem 4.1.3.1]. Propositions 4.1.2.5 and 4.1.2.1 of [18] imply that
Lat(x) →⊂ R/x is right anodyne. Taking the pushout-join with ∅ ⊂ {x} and applying [18,
Lemma 2.1.2.3] yields that the diagram

Lat(x) - (R<β/x)

Lat(x) ? {x}
?

- (R<β/x) ? {x}
?

is a homotopy pushout for the Joyal model structure. Using the fact that joins preserve con-
nected homotopy colimits (see e.g. [27, Lemma 4.14] for a relative version) and a dual argument
for the inclusion Mat(x) ⊂ x\R<β , we conclude that we have a series of homotopy pushout
squares

Lat(x) ? Mat(x) - (R<β/x) ? Mat(x) - (R<β/x) ? (x\R<β)

Lat(x) ? {x} ? Mat(x)
?

- (R<β/x) ? {x} ? Mat(x)
?

- (R<β/x) ? {x} ? (x\R<β)
?

which together with [18, Proposition A.2.9.14] and pasting for homotopy pullbacks implies the
result. �

It will be easiest to state the results in the infinity-category of all infinity-categories Cat∞,
with usual size issue remarks. The reason for this is that many of the proofs in this section
will manipulate with diagrams which are canonically presented in SSet, but in which some
categorical equivalences are pointing in the wrong direction. Such zig-zags of diagrams will
induce well-defined diagrams in Cat∞:

Lemma 3.4. Assume given a zig-zag of diagrams I × [1] → SSet, valued in quasicategories and
depicted schematically as

X•(0) �
∼

... - Y•(0)

...

X•(1)
?
�
∼

... - Y•(1)
?

with the bottom index corresponding to the I-direction. Assume that each left-pointing arrow is a
categorical equivalence. Then there exists an induced commutative diagram in Cat∞,

X•(0) - Y•(0)

X•(1)
?

- Y•(1),
?
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with each horizontal arrow induced by choosing inverses of left-pointing arrows and compositions.

Proof. Direct consequence of [6, Corollary 3.5.12] applied to Cat∞ itself. �

We will often identify an SSet-diagram with its image in Cat∞ if the details are clear from
the context.

The following proposition is the expression of the Reedy induction as applied to a suitably
bicomplete infinity-category.

Proposition 3.5. (Cf [18, Remark A.2.9.16]) let R be a Reedy category and Y be a quasicategory.
Assume that Y admits Lat(y)-colimits and Mat(y)-limits for each y ∈ R. Then, in the usual
notation for a good filtration, there is a diagram in Cat∞

Fun(Rβ,Y) - Fun(R<β,Y)

Fun(Lat(x) ? {x} ? Mat(x),Y)
?

- Fun(Lat(x) ? Mat(x),Y)
?

Fun([2],Y)
?

- Fun([1],Y)
?

(3.1 )

with all squares pullbacks. The upper vertical functors are restrictions, the bottom left vertical functor
sends S to lim−→Lat(x)

S → S(x) → lim←−Mat(x)
S, and the bottom right vertical functor sends S′ to

lim−→Lat(x)
S′ → lim←−Mat(x)

S′.

Proof. The nontrivial square of the diagram (3.1 ) is the bottom one. Let us correctly construct
the functors appearing in it. Consider the inclusion Lat(x) ? {x} ?Mat(x) ⊂ Lat(x). ? {x} ?
Mat(x)/. The induced restriction functor

Fun(Lat(x) ? {x} ? Mat(x),Y)←− Fun(Lat(x). ? {x} ? Mat(x)/,Y)

admits a section, given by putting a colimit in the cone vertex of Lat(x). and a limit in the
cone vertex of Mat(x)/. Formally, it is a composition of a left then right Kan extension along
the full inclusions

Lat(x) ? {x} ? Mat(x) ⊂ Lat(x). ? {x} ? Mat(x) ⊂ Lat(x). ? {x} ? Mat(x)/.

The results of [18, 4.3.2] then imply that the induced functor

Fun(Lat(x) ? {x} ? Mat(x),Y)←− Fun′(Lat(x). ? {x} ? Mat(x)/,Y)

is an equivalence of infinity-categories, where Fun′(Lat(x). ? {x} ? Mat(x)/,Y) is the full
subcategory consisting of functors F : Lat(x). ? {x} ? Mat(x)/ → Y which carry the cone
vertex l ∈ Lat(x). to the colimit of F over Lat(x), and the cone vertex m ∈ Mat(x)/
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to the limit of F over Mat(x). One can apply exactly the same analysis to the inclusion
Lat(x) ? Mat(x) ⊂ Lat(x). ? Mat(x)/.

The following will suffice. For any two categories A,B, we need to show that the diagram

Fun(A. ? {x} ? B/,Y) - Fun([2],Y)

Fun(A. ? B/,Y)
?

- Fun([1],Y)
?

is a pullback square in Cat∞. If we denote by a ∈ A. and b ∈ B/ the cone vertices, then the
horizontal arrows are induced by [2] ∼= {a} ? {x} ? {b} ⊂ A. ? {x} ?B/ and [1] ∼= {a} ? {b} ⊂
A. ? B/ respectively, with vertical arrows then also being the obvious restrictions.

In turn, it will suffice to prove that the diagram

{a} ? {b} - A. ? B/

{a} ? {x} ? {b}
?

- A. ? {x} ? B/
?

(3.2)

is a pushout in Cat∞. To see that the latter is true, assume first that A = ∅. Then the diagram
(3.2) is a join with {a} ?− of

{b} - B/

{x} ? {b}
?

- {x} ? B/
?

(3.3 )

and this diagram is the pushout-join of ∅ ⊂ {x} with {b} ⊂ B/. The latter is well-known to
be left anodyne: it is a left adjoint, and one can thus use the same reasoning as in Proposition
3.3. Hence the diagram (3.3 ) is infinity-coCartesian in Cat∞ by [18, Lemma 2.1.2.3]. We now
present the diagram (3.2) as

{a} ? {b} - {a} ? B/ - A. ? B/

{a} ? {x} ? {b}
?

- {a} ? {x} ? B/
?

- A. ? {x} ? B/.
?

By using the fact that joins preserve connected homotopy colimits [27, Lemma 4.14] and the
argument for the diagram (3.3 ) and its dual for B = ∅, we conclude that (3.2) is a pushout in
Cat∞.

To recapitulate, we have the following diagram in Cat∞ (canonically induced from a dia-
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gram in SSet)

Fun(Lat(x) ? {x} ? Mat(x),Y) - Fun(Lat(x) ? Mat(x),Y)

Fun′(Lat(x). ? {x} ? Mat(x)/,Y)

∼6

- Fun′(Lat(x). ? Mat(x)/,Y)

∼6

Fun(Lat(x). ? {x} ? Mat(x)/,Y)
?

- Fun(Lat(x). ? Mat(x)/,Y)
?

Fun([2],Y)
?

- Fun([1],Y)
?

(3.4)

and inverting in Cat∞ the upper equivalences, we get the bottom square of (3.1 ). �

We would like to also address the functoriality of the diagram (3.1 ) of Proposition 3.5. A
typical functor which we would be interested in is the projection to the infinity-localisation
p : M → LM of a model category M. Given a diagram X : Lat(x) → M, the image of
lim−→X in LM ceases in general to be the colimit of p ◦ X . It remains such, however, if X is
Reedy-cofibrant [2, Proposition 2.5.6]. This motivates the following definition.

Definition 3.6. Let R be a Reedy category and F : X → Y be an infinity-functor between
quasicategories both admitting Lat(x)-colimits and Mat(x)-limits for x. Let Rβ be the step
of a good filtration that adds x. A diagram X : R<β → X is called (F, x)-compatible if the
following holds:

i. The colimit cone Lat(x). → X obtained by restricting X to Lat(x) and then taking the
colimit, remains a colimit cone after postcomposing with F ,

ii. The limit cone Mat(x)/ → X obtained by restricting X to Mat(x) and then taking the
limit, remains a limit cone after postcomposing with F .

A general diagram R → X is (F, x)-compatible iff its restriction to R<β is such. Denote
by Fun(F,x)(R<β,X), Fun(F,x)(Rβ,X) and Fun(F,x)(R,X) the full subcategories spanned by
(F, x)-compatible functors.

Proposition 3.7. Let R be a Reedy category and and F : X→ Y be an infinity-functor between qua-
sicategories both admitting Lat(y)-colimits and Mat(y)-limits for each y in R. Then, if Rβ is ob-
tained from R<β by adding x, the diagram (3.1) of Proposition 3.5 induces the diagram Dia(Rβ, F ):

Fun(F,x)(Rβ,X) - Fun([2],X)

Fun(F,x)(R<β,X)
?

- Fun([1],X);
?

(3.5 )
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the upper horizontal functor sends S to lim−→Lat(x)
S → S(x) → lim←−Mat(x)

S, and the bottom

horizontal functor sends S′ to lim−→Lat(x)
S′ → lim←−Mat(x)

S′.

Moreover, we have an induced natural transformation of diagrams

F∗ : Dia(Rβ, F ) −→ Dia(Rβ, IdY)

with Dia(Rβ, IdY) denoting the diagram (3.1) for Y.

Proof. The definition of compatibility implies that the following square is pullback in SSet:

Fun(F,x)(Rβ,X) - Fun(Rβ,X)

Fun(F,x)(R<β,X)
?

- Fun(R<β,X);
?

the right functor is moreover a categorical fibration, since R<β ⊂ Rβ is an inclusion. This
diagram is hence a homotopy pullback, so the existence of (3.5 ) is clear. To see the functoriality,
write the diagram (3.1 ) as a zig-zag, using the diagram (3.4). A close inspection shows that
F : X → Y induces a map between the zig-zags representing (3.5 ) and (3.1 ): the nontrivial
moment is in observing that the restriction of the functor

Fun′(Lat(x). ? {x} ? Mat(x)/,X)→ Fun(Lat(x). ? {x} ? Mat(x)/,X′)

to the diagrams Lat(x). ? {x} ? Mat(x)/ → X which come from (F, x)-compatible diagrams,
factors through Fun′(Lat(x). ? {x} ? Mat(x)/,X′). �

3.1 Induction for higher-categorical sections

We need to introduce the notion of the higher-categorical restriction to the fibre. For any
object x ∈ R, the natural inclusion functor Lat(x) ⊂ R extends to a functor

Cx : Lat(x)× [1]→ R

which sends (y → x, 0) to y and (y → x, 1) to x. There is a similar extension forMat(x) ⊂ R.

Definition 3.8. Let X → R be a coCartesian fibration and x ∈ R. A x-left restriction of
S ∈ Sect(R,X) is the infinity-functor LxS : Lat(x)→ X(x) defined as follows. In the diagram
in the diagram

Lat(x)
S|Lat(x)- X

Lat(x)× [1]

id× {0}
?

∩

Cx
- R
?
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choose a lifting CxS : Lat(x)× [1]→ X which sends each map of the form (y → x, 0)→ (y →
x, 1) to a coCartesian morphism of X. Then LxS is the restriction of CxS to Lat(x)× {1}.

The definition of a x-right restriction RxS : Mat(x) → X(x) for a Cartesian fibration
X→ R is given dually.

Arbitrary x-left and x-right restrictions always exist, and are defined up to an equivalence:

Lemma 3.9. For a coCartesian fibration X→ R, the restriction functor Sect(Lat(x)× [1],X)→
Sect(Lat(x),X) induces an equivalence between Sect(Lat(x),X) and a full subcategory

Sect[1]−cart(Lat(x)× [1],X) ⊂ Sect(Lat(x)× [1],X)

consisting of all sections that send maps of the form (y → x, 0) → (y → x, 1) to coCartesian
morphisms of X. There is a dual statement for Cartesian fibrations.

Proof. Recall the notion of right marked anodyne map (called marked anodyne in [18, Definition
3.1.1.1]), and the dual notion of left marked anodyne map. The inclusion Lat(x)[ ↪→ Lat(x)[ ×
[1]] is left marked anodyne, which follows from the dual of [18, Proposition 3.1.2.3]. Observe
that the functor Sect[1]−cart(Lat(x) × [1],X) → Sect(Lat(x),X) is precisely given by the
equivalence [18, Remark 3.1.3.4]

Map[R(Lat(x)[ × [1]],X\)
∼→ Map[R(Lat(x)[,X\),

where X\ means that we mark the coCartesian arrows in X. Thus liftings CxS in the diagram

Lat(x)[
S|Lat(x)- X\

Lat(x)[ × [1]]

id× {0}
?

∩

Cx
-

CxS
-

R]
?

always exist and have the required property, and the space of such liftings is contractible. �

Lemma 3.10. Let F : X → Y be a coCartesian morphism between coCartesian fibrations over R.
Then F preserves x-left restrictions for each x ∈ R.

Proof. The lemma follows from the existence and commutativity of the following diagram:

Sect(Lat(x),X) �
∼

Sect[1]−cart(Lat(x)× [1],X)
ev1- Fun(Lat(x),X(x))

Sect(Lat(x),Y)
?

�
∼

Sect[1]−cart(Lat(x)× [1],Y)
? ev1- Fun(Lat(x),Y(x)).

?

�

It will be illustrative to first start with the case of a direct Reedy category D and a coCarte-
sian fibration of quasicategories X→ D.
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Lemma 3.11. Let S ∈ SSet and i : A → B be a trivial cofibration (for the Joyal model structure)
in SSet/S. Then for any subset E ∈ A(1) containing all degenerate edges, the induced map of
marked simplicial sets, (A,E)→ (B, iE), is a trivial cofibration in both Cartesian and coCartesian
model structures on SSet+/S

].

Proof. From [18, Proposition 3.1.5.3] we know that the functor (−)[ : SSet/S → SSet/S] is
left Quillen, for either Cartesian or coCartesian model structure (one can check that the proof
is self-dual). We then have the following diagram in SSet/S]

E× [1][ - A[ - B[

E× [1]]
?

- (A,E)
?

- (B, iE)
?

where for the leftmost arrow, we equip E × [1] with the map to S induced by adjunction from
E → S1. The leftmost and the outer squares of this diagram are pushouts, hence the same is
true for the rightmost square. Thus (A,E)→ (B, iE) is a pushout of a trivial cofibration. �

Lemma 3.12. Let f : A → B be a left marked anodyne map and X ∈ SSet. Then the join
A ? X[ → B ? X[ is left marked anodyne. Dually, a join X[ ? A → X[ ? B of X with a right
marked anodyne map is right marked anodyne.

Proof. We prove the left part. By [27, Lemma 4.10], the pushout-join of f with ∅ → X[ is left
marked anodyne. Unraveling the definition, the pushout-join is given by

B
∐
A

A ? X[ → B ? X[.

Our map can be factored as a composition

A ? X[ → B
∐
A

A ? X[ → B ? X[,

and the left map is a pushout of the left marked anodyne map A→ B. �

Lemma 3.13. Let D be a direct category and {Dβ} denote a good filtration. Then there are zig-zags
of weak equivalences in SSet+/D for the coCartesian model structure:

Lat(x)[ −→ Lat(x)[ × [1]] ←− (Lat(x)[ × [1]])
∐

Lat(x)[x

Lat(x)[x,

Lat(x)[ ? {x} −→ (Lat(x)[ × [1]]) ? {x} ←− (Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? {x}).

Here the left maps are induced by the inclusion {0} ⊂ [1]] and Lat(x)[x denotes the category Lat(x)[

together with a constant functor to D of value x.
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Proof. Denote by M either {x} or the empty simplicial set. The observations of Lemmas 3.9
and 3.12 instantly imply that L (x)[ ?M [ → (Lat(x)[× [1]]) ?M [ is left marked anodyne, and
hence a coCartesian equivalence.

The remaining map is a pushout-join, without any markings, of ∅ ⊂ M with Lat(x) ⊂
Lat(x)×[1], with the latter map induced by the inclusion {1} ⊂ [1], which is right anodyne. The
stability properties of right anodyne maps, [18, Corollary 2.1.2.7], and [18, Lemma 2.1.2.3] again
imply that the resulting pushout-join is inner anodyne. Lemma 3.11 then allows to conclude that

(Lat(x)[ × [1]]) ? M [ ←− (Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? M)

is a coCartesian eqiuvalence. �

Proposition 3.14. Let X → D be a fibrewise cocomplete coCartesian fibration over a direct Reedy
category D. Let Dβ denote a good filtration of D, so that Dβ is obtained from D<β by adding an
object x ∈ D. Then there is a Cartesian square in the quasicategory Cat∞

Sect(Dβ,X) - Fun([1],X(x))

Sect(D<β,X)
?

- X(x)
?

where

1. the left vertical arrow is induced by the restriction along D<β → Dβ ,

2. the right vertical arrow is induced by the inclusion [0]→ [1] skipping 1 ∈ [1],

3. the bottom horizontal arrow sends S ∈ Sect(D<β,X) to lim−→Lat(x)
LxS. Here LxS is a x-left

restriction of S,

4. the upper horizontal arrow sends S ∈ Sect(Dβ,X) to lim−→Lat(x)
LxS → S(x).

Proof. Proposition 3.3 implies that the square

Sect(Dβ,X) - Sect(Lat(x) ? {x},X)

Sect(D<β,X)
?

- Sect(Lat(x),X)
?

is Cartesian in Cat∞. Lemma 3.13 then implies the existence of the following pullback square
in Cat∞:

Sect(Lat(x) ? {x},X) - Sect((Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? {x}),X)

Sect(Lat(x),X)
?

- Sect((Lat(x)[ × [1]])
∐

Lat(x)[x

Lat(x)[x,X).

?
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For the right arrow, the notation Sect(−,X) means Map[Dβ (−,X\). We notice that there is the
following pullback square:

Sect((Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? {x}),X) - Fun(Lat(x) ? {x},X(x))

Sect((Lat(x)[ × [1]])
∐

Lat(x)[x

Lat(x)[x,X)

?

- Fun(Lat(x),X(x))
?

which is induced by applying Sect(−,X) to a (homotopy) pushout square of marked simplicial
sets over D. Combining all the squares with Proposition 3.5, we finish the proof. �

To continue, we need to specify which fibrations we are going to consider over a general
Reedy category R. The higher-categorical generality that we choose to work with in this paper
is motivated by Lemma 1.41.

Definition 3.15. Let R be a Reedy category. A left Reedy fibration is a coCartesian fibration
of quasicategories X → R that is also a Cartesian (equivalently [18, Corollary 5.2.2.4] locally
Cartesian) fibration over the subcategory R−. The notion of a right Reedy fibration is given
dually.

Henceforth we shall stick with a left Reedy fibration X→ R. The corresponding results for
a right Reedy fibration can be obtained by dualisation.

Lemma 3.16. Let R be a Reedy category and {Rβ} denote a good filtration as before. LetM denote
either M (x) or x ? Mat(x). Then there is a zig-zag of weak equivalences in SSet+/Rβ for the
coCartesian model structure:

L (x)[ ? M [ −→ (L (x)[ × [1]]) ? M [ ←− (Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? M).

Here the left map is induced by the inclusion {0} ⊂ [1]] and Lat(x)[x denotes the category Lat(x)[

together with a constant functor to R of value x. A dual result can be formulated for Mat(x) and
the Cartesian model structure.

Proof. Verbatim Lemma 3.13. �

Proposition 3.17. Let X → R be a fibrewise bicomplete left Reedy fibration. Let Rβ be a good
filtration of R, so that Rβ is obtained from R<β by adding an object x ∈ R. Then there is a
Cartesian square in the quasicategory Cat∞

Sect(Rβ,X) - Fun([2],X(x))

Sect(R<β,X)
?

- Fun([1],X(x))
?

(3.6 )

54



where

1. the left vertical arrow is induced by the restriction along R<β → Rβ ,

2. the right vertical arrow is induced by the inclusion [1]→ [2] skipping 1 ∈ [2],

3. the bottom horizontal arrow sends S ∈ Sect(R<β,X) to lim−→Lat(x)
LxS → lim←−Mat(x)

RxS.

Here LxS and RxS are x-left and right restrictions of S,

4. the upper horizontal arrow sends S ∈ Sect(Rβ,X) to

S(x)

lim−→Lat(x)
LxS -

-

lim←−Mat(x)
RxS.

-

Moreover,

i. For each ordinal β, the Cat∞-limit of {Sect(Rγ ,X)}γ<β is equivalent, via the evident map,
to Sect(R<β,X).

ii. The Cat∞-limit of {Sect(Rβ,X)}β is equivalent, via the evident map, to Sect(R,X).

Proof. The last two statements, (i.) and (ii.), follow immediately from the properties of the
filtration {Rβ}. For the rest, use again Proposition 3.3, and from the diagram

Lat(x) ? Mat(x) - R<β - X

Lat(x) ? {x} ? Mat(x)
?

- Rβ

?
- R,
?

get a Cartesian diagram in Cat∞

Sect(Rβ,X) - Sect(Lat(x) ? {x} ? Mat(x),X)

Sect(R<β,X)
?

- Sect(Lat(x) ? Mat(x),X).
?

Lemma 3.16 implies that sections over Lat(x) ? Mat(x) can be replaced with sections over
(Lat(x)× [1])

∐
Lat(x)x

(Lat(x)x ?Mat(x)) which are coCartesian along certain edges coming
from [1] in Lat(x)× [1]. We can depict this by asserting the existence of the Cat∞-Cartesian
diagram:

Sect(Lat(x) ? {x} ? Mat(x),X) - Sect((Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? {x} ? Mat(x)[),X)

Sect(Lat(x) ? Mat(x),X)
?

- Sect((Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? Mat(x)[),X)

?
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obtained from a zig-zag in SSet[1] of length two. For the right arrow, we notice that there is
the following pullback square:

Sect((Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? {x} ? Mat(x)[),X) - Sect(Lat(x)x ? {x} ? Mat(x),X)

Sect((Lat(x)[ × [1]])
∐

Lat(x)[x

(Lat(x)[x ? Mat(x)[),X)

?
- Sect(Lat(x)x ? Mat(x),X).

?

Note that the pullback of X→ R to Lat(x)x ?{x}?Mat(x) is a genuine Cartesian fibration. A
similar argument concerning the replacement ofMat(x) supplies us with the following pullback
square in Cat∞:

Sect(Lat(x)x ? {x} ? Mat(x),X) - Fun(Lat(x) ? {x} ? Mat(x),X(x))

Sect(Lat(x)x ? Mat(x),X)
?

- Fun(Lat(x) ? Mat(x),X(x)).
?

Proposition 3.5 then concludes the proof. �

We conclude our discussion by outlining the functoriality of the diagram (3.6 ) that will be
useful for the purposes of the comparison.

Definition 3.18. Let R be a Reedy category and F : X → Y be an infinity-functor between
fibrewise bicomplete left Reedy fibrations over R. Let Rβ be the step of a good filtration that
adds x. A section X : R<β → X is called (F, x)-compatible if the following holds:

i. For each y ∈ R<β , the functor F preserves coCartesian arrows starting with X(y) and
Cartesian arrows over R− ending with X(y),

ii. The cone Lat(x). → X(x) obtained by taking a x-left restriction of X and then taking
the colimit, remains a colimit cone in Y(x) cone after postcomposing with F ,

iii. The coneMat(x)/ → X(x) obtained by taking a x-right restriction of X and then taking
the limit, remains a limit cone in Y(x) after postcomposing with F .

A general section R → X is (F, x)-compatible iff its restriction to R<β is such. Denote
by Sect(F,x)(R<β,X), Sect(F,x)(Rβ,X) and Sect(F,x)(R,X) the full subcategories spanned by
(F, x)-compatible functors.

An obvious compatibility is the following:

Lemma 3.19. Let F : X → Y be an infinity-functor between fibrewise bicomplete left Reedy fi-
brations over R. Then F preserves x-left restrictions and x-right restrictions of (F, x)-compatible
sections.
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Proof. Immediate using (i.) of Definition 3.18. �

Proposition 3.20. Let R be a Reedy category and and F : X → Y be an infinity-functor between
fibrewise bicomplete left Reedy fibrations over R. Then, if Rβ is obtained from R<β by adding x, the
diagram (3.6) of Proposition 3.17 induces the diagram Dia(Rβ, F ):

Sect(F,x)(Rβ,X) - Fun([2],X(x))

Sect(F,x)(R<β,X)
?

- Fun([1],X(x)).
?

(3.7 )

Moreover, post-composing with F induces a natural transformation of diagrams

F∗ : Dia(Rβ, F )→ Dia(Rβ, IdY)

with Dia(Rβ, IdY) denoting the diagram (3.6) for Y→ R.

Proof. The definition of compatibility implies that the following square is pullback in SSet:

Sect(F,x)(Rβ,X) - Sect(Rβ,X)

Sect(F,x)(R<β,X)
?

- Sect(R<β,X);
?

the right functor is moreover a categorical fibration, since R<β ⊂ Rβ is an inclusion (and
it becomes a cofibration in the coCartesian model structure on SSet+/R). This diagram is
hence a homotopy pullback, so the existence of (3.7 ) is clear. To see the functoriality, write the
diagram (3.6 ) as a zig-zag. A close inspection shows that F : X → Y induces a map between
the zig-zags representing (3.7 ) and (3.6 ): the nontrivial moments are covered by Lemma 3.19
and observing that the restriction of the functor (cf notation for the diagram (3.4))

Fun′(Lat(x). ? {x} ? Mat(x)/,X(x))→ Fun(Lat(x). ? {x} ? Mat(x)/,Y(x))

to the diagrams Lat(x).?{x}?Mat(x)/ → X(x) which come from (F, x)-compatible sections,
factors through Fun′(Lat(x). ? {x} ? Mat(x)/,Y(x)). �

3.2 Families of relative categories

Definition 3.21. Let (X,W) be a relative category and p : X → C a functor sending W to
C-isomorphisms. An infinity-localisation of p is the factoring of it as an infinity-localisation
X→ LX along W followed by a categorical fibration LX→ C of quasicategories.

An infinity-localisation of p is universal iff for any functor F : D → C, the induced map
LF ∗X→ F ∗LX is a categorical equivalence.
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Using the model structure on marked simplicial sets over the point, we can always (and even
functorially) factor (X,W) → (C, IsoC) = C\ as a trivial cofibration followed by a fibration.
This shows that the infinity-localisation of functors always exists.

Let E → C be an opfibration. Assume that each fibre E(c) is equipped with weak equiva-
lences W(c) that are preserved by the transition functors: if in a diagram

X - X ′

Y

∼
?

- Y ′
?

we have horizontal arrows opcartesian and X → Y ∈W(c), then X ′ → Y ′ ∈W(c′). The data
of W = IsoE ∪ (∪cW(c)) provides (the nerve of) E with the structure of a marked simplicial
set. Choose an infinity-localisation (E,W)

∼
↪→ LE � C\ of the functor E→ C.

Since LE is fibrant in SSet+, it is a localisation of E. One furthermore has [20, Proposition
5.2.3] that LE → C is a coCartesian fibration classified by the functor c 7→ LE(c), and the
infinity-functor E → LE preserves coCartesian arrows. Taking into account the naturality of
the Grothendieck construction [20, Remark 3.1.13], we also have that for any functor F : D→ C,
the natural morphism LF ∗E→ F ∗LE is a coCartesian equivalence over C. The localisation of
E→ C is thus universal.

Remark 3.22. A result of Hinich [11, 2.1.4] is similar to that of Mazel-Gee [20, Proposition
5.2.3] with a distinction: aside from inverting also the maps in the base, the fibration localiser
W is assumed to be saturated. The way we construct W = IsoE ∪ (∪cW(c)) does not usually
produce a saturated localiser, however in the Reedy setting this actually happens. In many
cases, W saturates to a bigger class of weak equivalences: those maps X → Y in M which
projection f : x→ y is an isomorphism and the induced map f!X → Y is in W(y).

If we a dealing with, say, a Quillen presheaf N→ C, then the transition adjunctions

N(c) � N(c′)

do not in general preserve weak equivalences. Instead, they preserve weak equivalences only if
restricted to the subcategories of cofibrant or fibrant objects, depending on the direction. To
study what happens if we localise N in this case, let us first introduce some tools.

Consider a relative category (M,W). Given a subcategory MQ ⊂ M whose objects we
shall typically denote QX , for any composable sequence X0 → ... → Xn of morphisms in M,
denote by

MQ/
W(X0 → ...→ Xn)

the category whose objects are diagrams (with the bottom row always fixed)

QX0
- ... - QXn

X0

∼
?

- ... - Xn

∼
?
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with vertical arrows in W, and morphisms being weak equivalences between the top rows. One
can dually define an undercategorical analogue that we shall denote (X0 → ...→ Xn)\WMQ.

Definition 3.23. Let (M,W) be a relative category.

1. A left approximation is a full subcategory MQ ⊂ M such that for each sequence X0 →
...→ Xn, the category MQ/

W(X0 → ...→ Xn) is contractible.

2. A right approximation is a full subcategory MR ⊂ M such that for each sequence X0 →
...→ Xn, the category (X0 → ...→ Xn)\WMR is contractible.

The following lemma justifies the choice of terminology.

Lemma 3.24. LetMQ ⊂M be a left approximation of a relative category (M,W). Then

(MQ,W|MQ
)→ (M,W)

is a weak equivalence of relative categories. There is a similar result that concerns right approxima-
tions.

Recall [5] [2, 2.2] that a functor F : M→M′ of relative categories is a weak equivalence, or
simply an equivalence, if the induced map of the infinity-localisations LF : LM → LM′ is an
equivalence of quasicategories. This condition is equivalent to that, for each n ≥ 0, the functor

F∗ : FunW([n],M) −→ FunW′([n],M′)

is a weak equivalence of the associated nerves. Here FunW([n],M) denotes the subcategory of
pointwise weak equivalences in Fun([n],M) and similarly for M′.

Proof. Denote by M̃ the full subcategory of Fun([1],M) consisting of weak equivalences QX
∼→

X where QX belongs to MQ. We have then a natural factorisation MQ → M̃→M. It is easy
to see that MQ → M̃ is a weak equivalence of relative categories, since it admits a homotopy
inverse.

We observe that for each n, the functor FunW([n], M̃) → FunW([n],M) is an opfibration,
hence by Quillen Theorem A it is sufficient to prove that its fibres are contractible. However,
the fibre of this functor over X0 → ...→ Xn is exactly MQ/

W(X0 → ...→ Xn). �

As the choice of notation suggests, the fundamental examples [11, 1.3.7] [2, Lemma 2.4.8]
of left approximations are given by the subcategories Mc ⊂ M of cofibrant objects in a model
category M. Fibrant objects, dually, serve as right approximations. The identity functor is of
course both left and right approximation. We will have further examples below.

In the case of (co)fibrant objects in a model category, a stronger approximation property
holds.

Definition 3.25. Let (M,W) be a relative category. A strong left approximation is a full sub-
category MQ ⊂M such that
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i. for each X ∈M, the category MQ/
WX is contractible, and

ii. for each X → Y ∈ M[1], the projection MQ/
W(X → Y ) → MQ/

WX has contractible
fibres.

the definition of a strong right approximation is given dually.

Lemma 3.26. Any strong left approximation is a left approximation, and dually, any strong right
approximation is a right approximation.

Proof. The projection functor

MQ/
W(X0 → ...→ Xn)→MQ/

W(X0 → ...→ Xn−1)

is a Grothendieck fibration whose fibres are the same as the fibres of the projection

MQ/
W(Xn−1 → Xn)→MQ/

WXn−1.

Quillen Theorem A and induction imply the result. �

Lemma 3.27. Let M be a model category. The inclusion Mc ⊂ M of cofibrant objects is a strong
left approximation. The inclusionMf ⊂M of fibrant objects is a strong right approximation.

Proof. We prove the left part. The contractibility of Mc/
WX is already established [2, Lemma

2.4.8]. We now have to prove that for each X → Y and a weak equivalence QX
∼→ X with

QX cofibrant, the category of fillers of the upper right corner in the square

QX - QY

X

∼
?

- Y

∼
?

is contractible. Note that this will follow if we prove that for any map f : QX → Y with QX
cofibrant, the category Fact(f) of factorisations

QY

QX
f

-

-

Y

∼
- (3.8 )

with QY cofibrant and QY → Y a weak equivalence, is contractible.

Denote by Factc(f) ⊂ Fact(f) the subcategory consisting of all the factorisations in
which QX → QY is a cofibration. The comma-fibre of this functor over an object (3.8 )
is the category of cofibrant replacements of (3.8 ) in the model category f\(M/Y ). Hence
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Factc(f) → Fact(f) is a homotopy equivalence. The category Factc(f) is however con-
tractible: an object

QY

QX
f

-
⊂

-

Y

∼
-

is a cofibrant replacement of f in QX\M. �

Left and right approximations interact reasonably well in families. The following proposi-
tions will be sufficient for our needs. First, consider a typical situation when one has a family of
model categories and functors that preserve cofibrations and trivial cofibrations. Such functors
do not preserve weak equivalences on the nose, but we can always limit our attention to the
cofibrant objects:

Lemma 3.28. Let p : M → C be an opfibration such that each fibre M(c) is equipped with weak
equivalences W(c) and a strong left approximation MQ(c), subject to the condition that given a
diagram

QX - X ′

QY

∼
?

- Y ′
?

with left vertical arrow a fibrewise weak equivalence, horizontal arrows opcartesian, andQX,QY ∈
MQ(c) for some c, we have that X ′ → Y ′ is a weak equivalence inMQ(c′).

Denote byMQ ⊂M the subcategory spanned by all objects from allMQ(c). ThenMQ → C is an
opfibration whose transition functors preserve weak equivalences. Moreover, the inclusion MQ ⊂ M

is a strong left approximation, where we endow M with the totality of fibrewise weak equivalences
W = ∪cW(c).

Proof. The only nontrivial part is proving that MQ ⊂ M is a strong left approximation. For a
single object X , the category MQ/

WX is the same as MQ(x)/W(x)X for pX = x. It is hence
contractible by assumption.

For α : X → Y we study the fibres of the forgetful functor

U : MQ/
W(X → Y )→MQ/

WX.

Over QX
∼→ X , the fibre is the category of fillers of the right upper corner in the following

square:

QX - QY

X

∼
?

- Y ;

∼
?
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This is the same category as the category of fillers in the diagram

QX - QY

QX

=
?

- Y

∼
?

for the composition QX → X → Y . The latter is the same as the fibre of

U ′ : MQ(y)/W(pα!QX → Y )→MQ(y)/Wpα!X

over pα!QX → pα!QX . �

Given a relative category (X,W), we say that W is saturated if any map that becomes
invertible in LX, belongs to W. Weak equivalences of model categories are saturated.

Corollary 3.29. In the situation of Lemma 3.28, consider an infinity-localisation M→ LM→ C

of M → C. Then LM → C is a coCartesian fibration of quasicategories, and is a universal
localisation ofM→ C.

Assume that eachW(c) is saturated. Then a map α : X → Y ofM becomes coCartesian in LM
iff for anyMQ-approximation QX → X , the induced map pα!QX → Y is a weak equivalence.

Note that the last sentence implies that the infinity-functor M → LM preserves coCartesian
arrows with MQ-domain.

Proof. Since MQ ⊂ M is a weak equivalence of relative categories, one has LMQ
∼= LM.

Hence LM → C is a categorical fibration that is equivalent to a coCartesian fibration, hence
it is a coCartesian fibration itself [21, Corollary 3.4]. Moreover, for any F : D → C, we have
an equivalence LF ∗MQ

∼= LF ∗M, and since LMQ → C is universal, same result follows for
LM→ C.

Furthermore, the functor LMQ
∼= LM preserves coCartesian arrows, since in this case

being coCartesian coincides with the invariant definition [21, Theorem 3.3], and equivalences
preserve invariantly defined coCartesian arrows. The infinity-functor MQ → LMQ preserves
coCartesian arrows as well.

The last part of the corollary then follows from the observation that for α : X → Y and a
MQ-approximation QX

∼→ X , we have the following diagram in M:

QX - pα!QX

X

∼
?

α
- Y,
?

the map α being LM-coCartesian thus being equivalent to pα!QX → Y becoming invertible
in LM. �

Our next result is a variation of [20, Theorem 5.3.1].
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Lemma 3.30. Let (C,WC) and (D,WD) be two relative categories and

F : C � D : G

an adjunction such that

i. there is a left approximation CQ ⊂ C such that F preserves weak equivalences between the
objects of CQ,

ii. there is a right approximation DR ⊂ D such that G preserves weak equivalences between the
objects of DR.

LetM→ [1] be the bifibration corresponding to the adjunction F a G that we endow with the weak
equivalences W = WC ∪WD. Denote by Ml the subcategory of M spanned by CQ and D, and by
Mr the subcategory spanned by C and DR. Then the inclusions Ml ⊂ M ⊃ Mr are, respectively, a
left and a right approximation. These approximations are strong whenever CQ ⊂ C and DR ⊂ D

are.

Proof. We prove the left part. A typical string of arrows in M is given by

X0 → ...→ Xm → Y0 → ...→ Yn

with Xi in C and Yj in D. Formally, m and n can take value −1, so that no X or Y appear
in the string. When this happens, we are reduced to proving that CQ ⊂ C or D = D are left
approximations, which is given.

For the middle case, consider the functor

Ml/
W(X0 → ...→ Xm → Y0 → ...→ Yn)→ CQ/

WC(X0 → ...→ Xm)

this is a Grothendieck fibration whose fibres have final objects. We thus conclude what is
needed. The treatment of the strong case is similar to the proof of Lemma 3.28. �

Corollary 3.31. In the situation of Lemma 3.30, consider an infinity-localisationM→ LM→ [1].
Then LM→ [1] is a biCartesian fibration that classifies an infinity-adjunction

LF : LC � LD : RG.

The value of LF at X is represented by FQX , and the value of RG at Y is represented by GRY .

The value of the unit of the adjunction LF a RG at X ∈ LC is equivalent to the image of the
following chain of C-morphisms:

X
∼← QX → GFQX → G(RFQX)

with QX
∼→ X and FQX

∼→ RFQX being the approximations. The expression for the counit is
given dually.
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Proof. Lemma 3.30 allows us to conclude that LMl
∼= LM ∼= LMr, hence LM → [1] is a

categorical fibration that is equivalent to both a Cartesian and a coCartesian fibration. It is
also universal, so LC ∼= LM(0) and LD ∼= LM(1). Same analysis as in Corollary 3.29 permits
us to conclude that α : X → Y of M becomes coCartesian in LM if pα!QX → Y is a weak
equivalence, and similarly for becoming Cartesian.

To see the unit statement, recall [18, Proposition 5.2.2.8]. Given a biCartesian fibration
B → [1] and x ∈ B(0), first choose a coCartesian arrow x → f!x covering 0 → 1, and then
a Cartesian arrow f∗f!x → f!x covering the same arrow. The induced arrow x → f∗f!x is
(equivalent to) the value of the unit of the adjunction f! a f∗ at x.

We now observe that for QX ∈ CQ, the composition QX → FQX
∼→ RFQX becomes

coCartesian in LM. Since Cartesian maps with DR-codomains remain Cartesian, the resulting
map QX → G(RFQX) represents the unit of the infinity-adjunction LF a RG evaluated at
QX . However, it admits a factorisation QX → GFQX → G(RFQX) in C. �

We conclude this subsection with a couple of lemmas that will permit us to conclude that the
higher-categorical Reedy induction holds for the localisations of model categories of sections.
For a relative category (M,W), denote by LHM its Dwyer-Kan “hammock” localisation.

Lemma 3.32. Let

(M1,W1)
F
- (M2,W2)

(M3,W3)

G
?

H
- (M4,W4)

K
?

be a diagram of relative categories and equivalence preserving functors, such that

i. The induced square

ObM1
- ObM2

ObM3

?
- ObM4

?

is a pullback.

ii. for each X,Y ∈M1, the induced square of simplicial sets

LHM1(X,Y ) - LHM2(FX,FY )

LHM3(GX,GY )

?
- LHM4(KFX,KFY )

?

is a homotopy pullback.
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iii. The functor HoK : HoM2 → HoM4 is an isofibration.

Then the induced square
LHM1

- LHM2

LHM3

?
- LHM4

?
(3.9 )

is a homotopy pullback of simplicial categories.

Proof. We use the key observation of [14, Lemma 3.1.11] asserting that a functor F : C → D of
simplicial categories can be factored as a weak equivalence and an isomorphism on object-sets
followed by a map that is a fibration on mapping spaces. Using this observation we replace the
diagram (3.9 ) by a weakly equivalent diagram

LHM1
- (LHM2)′

LHM3

?
- (LHM4)′

?

where (LHM2)′ → (LHM4)′ is now a genuine fibration of simplicial categories. It is still true
that the diagram of object-sets is a pullback, and an analogue of (ii.) holds for this diagram as
well. It thus follows that

LHM1 → LHM3 ×(LHM4)′ (L
HM2)′

is bijective on objects and homotopically fully faithful. Since the model structure on simplicial
categories is right proper, our proof is complete. �

Lemma 3.33. Let α be an ordinal and assume given, for each β < α, a simplicial category Aβ ,
and for each β′ < β, a simplicial functor Aβ → Aβ′ rendering the assignment β 7→ Aβ functorial.
Assume furthermore given, for each β, a simplicial functor Aβ → A<β , and for each γ < β, a
commutative diagram

Aβ

A<β -
�

Aγ

-

exhibiting A<β as a cone of {Aγ}γ<β .
We require that the following holds.

0. For each successor ordinal the functor Aβ+1 → A<β+1 is equal to the functor Aβ+1 → Aβ ,

1. For each ordinal β, the functor Aβ → A<β is an isofibration after applying Ho ,
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2. For each ordinal β, the functors A<β → Aγ exhibit ObA<β as a limit of {ObAβ}γ<β ,

3. For each ordinal β and x, y ∈ A<β , denote by xγ , yγ their image in Aγ . Then the maps
A<β → Aγ exhibit the simplicial set A<β(x, y) as a homotopy limit of {A(xγ , yγ)}γ<β

Let A be a simplicial category and A→ Aβ be a compatible family of functors such that

i. The maps A→ Aβ exhibit ObA as a limit of ObAβ ,

ii. For each x, y ∈ A, denote by xβ, yβ their image in Aβ . Then the maps A → Aβ exhibit the
simplicial set A(x, y) as a homotopy limit of A(xβ, yβ).

Then for any ordinal β, A<β is the homotopy limit of {Aγ}γ<β , and A is the homotopy limit of
{Aβ}β<α.

Note that due to (0.), the conditions (2.) and (3.) are nontrivial only for a limit ordinal β.

Proof. Use transfinite induction to construct a new diagram of fibrations between fibrant
simplicial categories that we shall denote {Bβ}, together with suitable maps Bβ → B<β . For
β = 0, the map A0 → B0 is the weak equivalence that is an identity on objects followed by
a fibration B0 → [0]. For the inductive step, set B<β = lim←−γ<β Bγ . An elementary lifting
argument shows that for each γ < β, the projections B<β → Bγ are fibrations. Moreover B<β
is the limit of a diagram of fibrations between fibrant simplicial categories, hence a homotopy
limit as well. Conditions (2.) and (3.) imply that A<β → B<β is bijective on objects and weakly
fully faithful, hence an equivalence of simplicial categories.

We now factor the composition Aβ → A<β → B<β as an object-bijective weak equivalence
Aβ → Bβ followed by a local fibration Bβ → B<β . Since bijective-on-objects equivalences are
isofibrations, the simplicial functor Bβ → B<β will be a Ho -isofibration and hence a fibration
as well. The induction is thus complete and the limit of {Bβ}β<α is also the homotopy limit.

To complete the proof, note that A → Bβ satisfy an analogue of (i.) and (ii.), hence the
functor A → lim←−β Bβ is bijective on objects and weakly fully faithful, hence an equivalence of
simplicial categories. �

The following proposition will be of use in our induction later on, and is a good illustration
of one of the lemmas we just proved.

Proposition 3.34 (Cisinski, Hirschowitz-Simpson). LetM be a model category and [n] a finite
ordinal. Then the functor Fun([n],M)→ Fun([n], LM) induces an equivalence of quasicategories

LFun([n],M) ∼= Fun([n], LM).

Proof. Equip Fun([n],M) with projective model structure. It will be sufficient to prove that the
induced functor LFun([n],M)cf ∼= Fun([n], LMcf ) is an equivalence.
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The map [n− 1]
∐

[0][1]→ [n] (we include [n− 1] as a left interval in [n]) is inner anodyne
(one can express it as a pushout-join and apply [18, Lemma 2.1.2.3]). This implies that for any
quasicategory X, the induced square

Fun([n],X) - Fun([1],X)

Fun([n− 1],X)
?

- X
?

is a pullback in Cat∞. In particular, it is true for LMcf .

Note that we have a similar pullback square of 1-categories of fibrant-cofibrant objects:

Fun([n],M)cf - Fun([1],M)cf

Fun([n− 1],M)cf

?
- Mcf

?

where, again, we equip all functor categories with projective model structure. This implies that
for any X ∈ Fun([n],M)cf and a simplicial resolution Y• ∈ Fun([n],M)∆op

cf , the following
square is a pullback in SSet:

Fun([n],M)cf (X,Y•) - Fun([1],M)cf (X,Y•)

Fun([n− 1],M)cf (X,Y•)
?

- Mcf (X,Y•),
?

where we abuse the notation and identify X,Y• and their images in the different categories.
Note that Y• remains a simplicial resolution even when restricted to Fun([n−1],M) and all other
categories. All simplicial sets participating in the diagram above are fibrant, and moreover, the
map

Fun([1],M)cf (X,Y•)→Mcf (X,Y•) (3.10)

is a Kan fibration: denoting by ev the evaluation-at-zero functor Fun([1],M)→M and by ev!

its left adjoint, we see that the map (3.10) is given by precomposing with ev!evX → X , which
is a projective cofibration by inspection.

Recall [23, Lemma 6.1] that given any model category N, there exists a span of weak
equivalences of simplicial sets relating the mapping spaces LHN(X,Y ) of the Dwyer-Kan
localisation and homotopy function complexes N(X,Y•). Note that the span of [23, Lemma
6.1] is functorial, both with respect to maps in N and along functors Ncf → N′ that preserve
weak equivalences.

Applying the above observation to establish the equivalence between Fun([n],M)cf (X,Y•)

and LH Fun([n],M)cf (X,Y0), we see that the conditions (i.) and (ii.) of Lemma 3.32 are
satisfied. Since every isomorphism in HoMcf can be realised as a weak equivalence between
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fibrant-cofibrant objects, it is easy to check that the functor Fun([1],M)cf → Mcf is a Ho -
isofibration as well. Thus Lemma 3.32 (and a passage through homotopy coherent nerve)
implies that

LFun([n],M)cf - LFun([1],M)cf

LFun([n− 1],M)cf

?
- LMcf ,

?

is a pullback in Cat∞. Everything will thus follow by induction from the case n = 1.

The infinity-functor LFun([1],M)cf ∼= Fun([1], LMcf ) is essentially surjective. This is true
since for any cofibrant-fibrant x, y, the map

Mcf (x, y)→ π0LMcf (x, y) ∼= HoMcf (x, y)

is surjective, as per well known fact for model categories. It remains to prove fully faithfulness.
Let f : A→ B and g• : C• → D• be, respectively, an object of LFun([1],M)cf and a simplicial
resolution in LFun([1],M)∆op

cf . The following square is a pullback in SSet:

Fun([1],M)cf (f, g•) - Mcf (A,C•)

Mcf (B,D•)
?

- Mcf (A,D•),
?

and the bottom map is a fibration, being induced as a pullback along the cofibration A → B.
Using [23, Lemma 6.1], this implies again that the mapping space LH Fun([1],M)cf (f, g0) is
equivalent to the homotopy end of the functor

[1]op × [1]
(f,g0)−→ LHMop

cf × L
HMcf

Hom−→ SSet,

however, up to an application of the coherent nerve and a choice of a model of the hom-functor
[19, Proposition 5.2.1.11], it is exactly the same presentation that is valid for the mapping spaces
in Fun([1], LMcf ), [9, Proposition 5.1]. �

3.3 The comparison

Recall that a left model Reedy fibration is a functor p : M → R to a Reedy category
that is a Grothendieck opfibration, a Grothendieck fibration over R−, such that the associated
semifibration (cf Lemma 1.41) is admissible in the sense of Definition 2.9.

Corollary 3.35. The infinity-localisation along the fibrewise weak equivalences Lp : LM → R

is universal, and is a left Reedy fibration of quasicategories. The functor M → LM preserves
coCartesian arrows with cofibrant domain, and Cartesian arrows over R− with fibrant codomain.
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Proof. An immediate specialisation of Corollary 3.29. �

Remark 3.36 (Cf Remark 3.22). Using the calculus of zig-zags, it is possible to show that the
saturated localiser giving rise to LM coincides in fact with the totality of weak equivalences:
it suffices to see that a fibrewise map that gets inverted in LM, is inverted in the fibre model
category localisation LM(c). By choosing a zig-zag representative for the inverse, the statement
becomes trivial, since a Reedy category has no non-identity isomorphisms.

The infinity-functor M → LM induces the functor Sect(R,M) → Sect(R, LM) from (the
nerve of) the 1-category Sect(R,M) to the sections of the localisation LM→ R. Since fibrewise
weak equivalences are inverted when projected to LM, we get a well defined infinity-functor

LSect(R,M)→ Sect(R, LM)

from the quasicategorical localisation of the model structure on Sect(R,M).

Theorem 3.37. Let M → R be a left model Reedy fibration. Then the induced infinity-functor
LSect(R,M)→ Sect(R, LM) is a categorical equivalence.

The proof will rely on the inductive description of sections over Reedy categories. For
Sect(R, LM), we have Proposition 3.17 and, evidently, the fact that for a good filtration Rβ ,
we have that Sect(R, LM) ∼= lim←− Sect(Rβ,M), where the limit is taken in Cat∞ along the
filtration of R. Let us see if the similar description holds for LSect(R,M).

Given any model category X, denote by Xc→f ⊂ Fun([1],X) the full subcategory given by
X → Y with X cofibrant and Y fibrant. Similarly, denote Xc↪→cf�f ⊂ Fun([2],X) the full
subcategory of X → Y → Z with X cofibrant, Z fibrant, X → Y a cofibration, Y → Z a
fibration. These categories appear naturally as targets for latching-matching decompositions.

Proposition 3.38. Let X be a model category.

1. The inclusions Xc→f ⊂ Fun([1],X) and Xc↪→cf�f ⊂ Fun([2],X) induce weak equivalences
of infinity-localisations.

2. The functor Xc↪→cf�f → Xc→f sending X → Y → Z to X → Z induces an isofibration
after taking (ordinary) localisations, HoXc↪→cf�f → HoXc→f .

Proof.
1. We will do the case of Xc→f ⊂ Fun([1],X), with the second case being similar but more
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cumbersome. Denote by Y the category which objects are diagrams

X1
- Y1

QX2

∼
6

- Y2

∼
6

QX3

∼
?

- RY3

∼
?

(3.11 )

where the vertical maps are weak equivalences, the objects whose name starts with Q are
cofibrant, and the objects whose name starts with R are fibrant. Various projections from Y

define a diagram of weak equivalence preserving functors fitting together in a 2-diagram

Y

Xc→f �
⇐�
Xc→∗
?

- X∗→∗.

⇒ -

Here, as the names suggest, X∗→∗ = Fun([1],X) and Xc→∗ is its full subcategory of arrows
with cofibrant domain. Both depicted natural transformations are valued in W. Moreover, the
inclusion Xc→f ⊂ X∗→∗ can be factored as Xc→f → Y → X∗→∗. Here, the first functor is a
homotopy inverse (in the sense of [4]) to the depicted Y→ Xc→f , given by putting QX → RY

in all three rows of (3.11 ).

In general, given two localisers (M,WM), (N,WN) one has the following diagram of
(higher) categories

Fun′(M,N) −→ Fun′(M, LN)
∼←− Fun(LM, LN)

with primes indicating (weak) equivalence preserving functors. As a consequence, a natural
transformation α : F ⇒ G of weak equivalence preserving functors induces a natural trans-
formation ᾱ : F̄ → Ḡ of infinity-functors from LM to LN; if α took values in WN then ᾱ is
invertible. Thus everything will follow if we prove that both functors

Xc→f ← Xc→∗ → X∗→∗

are weak equivalences in the model structure of [4]. Let us first consider the case of Xc→∗ →
X∗→∗. We shall prove that it is a left approximation. Given X• → Y• in Fun([n],X∗→∗), we
have to prove the contractibility of the category C(X• → Y•) of diagrams

QX• - Y ′•

X•

∼
?

- Y•

∼
?
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with bottom row fixed. There is a functor C(X• → Y•)→ C(X•), where C(X•) is the category
of objectwise cofibrant replacements of X•, and hence it is contractible. The functor C(X• →
Y•) → C(X•) is furthermore a Grothendieck fibration, so it will suffice to show that its fibres
have contractible nerve. The fibres are seen to have final objects, given by diagrams

QX• - Y•

X•

∼
?

- Y•.

=
?

In the case of Xc→f ← Xc→∗, we are, using the right approximation argument, presented
with studying the category D(QX• → Y•) of diagrams

QX• - Y•

QX ′•

∼
?

- RY•

∼
?

(3.12)

with fixed first row, and we instead consider the projection D(QX• → Y•) → D(Y•) to the
category of fibrant replacements of Y•. The fibres of this projection are given by diagrams (3.12)
with top row and left column fixed, and again,

QX• - Y•

QX•

=
?

- RY•

∼
?

serves as an initial object.

2. Consider first the following situation:

X ⊂ - Y -- Z

X ′

∼
?

- Z ′

∼
?

with the top row in Xc↪→cf�f and the bottom row in Xc→f . Taking the pushout of the left
corner, we factor the bottom map as follows:

X ⊂ - Y -- Z

X ′

∼
?
⊂ - Y ′′

∼
?

- Z ′.

∼
?

Since X,X ′, Y are cofibrant and X → Y is a cofibration, we see that the induced map
Y → Y ′′ is a weak equivalence. Factoring Y ′′ → Z ′ as a trivial cofibration Y ′′ ↪→ Y ′ followed
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by a fibration Y ′ � Z ′, we get a modified factorisation of the map X ′ → Z ′, together with the
diagram

X ⊂ - Y -- Z

X ′

∼
?
⊂ - Y ′

∼
?
-- Z ′

∼
?

in Xc↪→cf�f .

Using a dual argument with pullbacks, one can treat the case of weak equivalences pointing
up:

X ⊂ - Y -- Z

X ′

∼
6

- Z ′.

∼
6

In general, a weak equivalence in HoXc→f can be represented as a zig-zag of weak equivalences
in Xc→f . Using the above arguments, the isofibration property of HoXc↪→cf�f → HoXc→f is
readily verified step by step. �

Remark 3.39. The main difficulty of Proposition 3.38.1 comes from the non-assumption of the
functoriality of factorisations. If the factorisations in X are functorial, it is easy to construct the
(weakly) inverse functors to the inclusions Xc→f ⊂ Fun([1],X) and Xc↪→cf�f ⊂ Fun([2],X).

Denote by Sect(R,M)cf the full subcategory of cofibrant-fibrant sections for the Reedy
model structure. Since LSect(R,M)cf ∼= LSect(R,M), Theorem 3.37 will follow if we prove
that the induced functor LSect(R,M)cf → Sect(R, LM) is a categorical equivalence.

Proposition 3.40. LetM→ R be a left model Reedy fibration. Choose a good filtration {Rβ}β<α.
Then

1. if Rβ is obtained from R<β by adding x ∈ R, then the assignments

X 7→ (L xX → X(x)→M xX) and X 7→ (L xX →M xX)

determine a pullback square in Cat∞

LSect(Rβ,M)cf - LFun([2],M(x))

LSect(R<β,M)cf

?
- LFun([1],M(x)).

?

2. For each ordinal β, the Cat∞-limit of {LSect(Rγ ,M)cf}γ<β is equivalent, via the evident
map, to LSect(R<β,M)cf .
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3. TheCat∞-limit of {LSect(Rβ,M)cf}β is equivalent, via the evident map, to LSect(R,M)cf .

Proof. Considering the relation between quasicategorical and Dwyer-Kan simplicial localisation
as explained in [11], it will be sufficient to prove the corresponding statements for simplicial
localisations. For this, we shall use Lemmas 3.32 and 3.33.

Using the same notations as before, there is a pullback square of categories

Sect(Rβ,M)cf - M(x)c↪→cf�f

Sect(R<β,M)cf

?
- M(x)c→f

?
(3.13 )

with horizontal functors given by latching-matching factorisations. This square has the property
that all functors preserve weak equivalences.

Take a cofibrant-fibrant section X ∈ Sect(Rβ,M)cf and a(n always existing) simplicial
resolution Y ∈ Sect(Rβ,M)∆op

cf . Note that the restriction X|R<β remains cofibrant-fibrant and
Y|R<β remains a resolution valued in cofibrant-fibrant objects, since the condition for Y to be
Reedy fibrant (as a simplicial object) is required objectwise. We thus have that the natural map

Sect(Rβ,M)(X,Y)→ Sect(R<β,M)(X|R<β ,Y|R<β )

is a map of Kan complexes representing the corresponding map LHSect(Rβ,M)(X,Y(0))→
LHSect(R<β,M)(X|R<β ,Y(0)|R<β ) (we omit the subscript (−)cf as no information is lost).

Put the projective model structure on Fun([1],M(x)) (the unique map of [1] raises the
degree). For Fun([2],M(x)), consider the Reedy structure such that 0 → 1 and 0 → 2 are
treated as degree-raising morphisms, and 1 → 2 as a degree-lowering. The vertical functor
Fun([2],M(x))→ Fun([1],M(x)) then preserves all classes of the model structure. The functor

Sect(Rβ,M)cf - Fun([2],M(x)), X 7→ X012 = L xX → X(x)→M xX,

(we shall henceforth write X0 = L xX and so on) however, does not send fibrant-cofibrant
objects to fibrant-cofibrant objects. Same observation applies to the functor

Sect(R<β,M)cf - Fun([1],M(x)), X 7→ X02 = L xX →M xX.

Let us see how to correct this. For cofibrant-fibrant X , its value X012 = X0 → X1 → X2 has
the property that X0 is cofibrant and X0 → X1 is a cofibration. For our purposes, it will be
sufficient to work with a cofibrant replacement QX012 that we obtain by factoring X0 → X2

as a cofibration X0 → QX2 followed by a trivial fibration QX2 → X2. Since X0 → X1 is a
cofibration, the dotted arrow exists in the diagram

QX2

X0
-

-

X1

6

- X2

-
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thus defining QX012 → X012. Note that the map resulting from composing these sequences,
QX02 → X02, is a cofibrant replacement as well.

Similarly, taking a simplicial resolution Y, we would like to arrange for its Reedy fibrant
replacement. Since the transition functors of M → R along the “matching” maps R− are
right adjoints, and since the limits in Sect(−,M) are calculated fibre by fibre, we have the
commutativity of M x and the simplicial matching functor M ∆

n . In particular, we have that the
assignment

Sect(Rβ,M)∆op

cf
- Fun([2],M(x))∆op

, Y 7→ Y012 = L xY → Y(x)→M xY,

induces for each [n] ∈ ∆ the diagram

Y0(n) - Y1(n) - Y2(n)

M ∆
nY0

?
- M ∆

nY1

?
- M ∆

nY2

?

such that the maps Y2(n) → M ∆
nY2 and Y1(n) → Y2(n)

∏
M ∆

nY2
M ∆

nY1 (and hence

Y1(n) → M ∆
nY1) are fibrations. As a consequence, to get a fibrant replacement of Y012 it

will suffice to factor Y0 → Y1 as a trivial (simplicial) Reedy cofibration Y0 → RY1 followed
by a Reedy fibration RY1 → Y1. Denote the result by Y012 → RY012; the associated map
Y02 → RY02 is also a Reedy fibrant replacement in Fun([1],M(x))∆op

.

Observe now that, starting from X ∈ Sect(Rβ,M)cf and Y ∈ Sect(Rβ,M)∆op

cf as above,
we have the following pullback squares of simplicial sets:

Sect(Rβ,M)(X,Y) - Sect(R<β,M)(X|R<β ,Y|R<β )

Fun([2],M(x))(X012,Y012)
?

- Fun([1],M(x))(X02,Y02)
?

Fun([2],M(x))(QX012,Y012)
?

- Fun([1],M(x))(QX02,Y02)
?

Fun([2],M(x))(QX012, RY012)
?

- Fun([1],M(x))(QX02, RY02).
?

(3.14)

We thus have that the outer square is likewise a pullback. Moreover, observe that

Fun([2],M(x))(QX012, RY012) −→ Fun([1],M(x))(QX02, RY02)

is a Kan fibration: it is induced by applying Fun([2],M(x))(−, RY012) to the map

X0
- X0

- QX2

X0

?
- X1

?
- QX2

?

74



which is a cofibration in the chosen model structure on Fun([2],M(x)). This implies that

Sect(Rβ,M)(X,Y) −→ Sect(R<β,M)(X|R<β ,Y|R<β ) (3.15 )

is a Kan fibration and that the outer square of (3.14) is a homotopy pullback.

Let us examine the induced pull-back square of simplicial localisations,

LHSect(Rβ,M)cf - LHM(x)c↪→cf�f

LHSect(R<β,M)cf

?
- LHM(x)c→f .

?
(3.16 )

The right vertical functor is a Ho -isofibration by (2.) of Proposition 3.38, and for each X,Y ∈
LHSect(Rβ,M)cf , the induced square of simplicial hom-spaces is a homotopy pullback, as
follows from the argument above and [23, Lemma 6.1]. Lemma 3.32 thus tells us that (3.16 ) is a
homotopy pullback. Combining with the equivalences

LHM(x)c↪→cf�f
∼→ LH Fun([2],M(x)) and LHM(x)c→f

∼→ LH Fun([1],M(x)),

we prove the first statement of the proposition.

The 1-category Sect(R,M)cf is equivalent (even isomorphic) to the limit of the inverse
system {Sect(Rβ,M)cf}β<α. Let us verify that the conditions of Lemma 3.33 are satisfied for

LHSect(R,M)cf → LHSect(Rβ,M)cf → LHSect(R<β,M)cf .

The conditions (0.), (2.) and (i.) of Lemma 3.33 are readily verified.

Using the pullback diagram (3.13 ) and (2.) of Proposition 3.38, we conclude that for each β,
the functor LHSect(Rβ,M)cf → LHSect(R<β,M)cf is a Ho -isofibration. This corresponds
to the condition (1.) of Lemma 3.33. The limit ordinals and R itself are treated by the same
sort of argument. If β is an ordinal, then Sect(R<β,M)cf (X,Y) coincides with the limit
of {Sect(Rγ ,M)cf (X|Rγ ,Y|Rγ )}γ<β . Using the Kan fibration remark around (3.15 ) and in-
duction, we observe that Sect(R<β,M)cf (X,Y) is also the homotopy limit of its restrictions.
Inductively we also get that Sect(R,M)cf (X,Y) is the homotopy limit of its restrictions, and
using [23, Lemma 6.1] again, we verify (3.) and (ii.). �

Proof of Theorem 3.37. In light of Propositions 3.17 and 3.40, everything will follow by
transfinite induction from the comparison for model categories as described in Proposition
3.34, if we show that for each β, there is a map in Cat∞, naturally induced on each term by
F : M→ LM, from the square

Sect(Rβ,M)cf - Fun([2],M(x))

Sect(R<β,M)cf

?
- Fun([1],M(x))

?
(3.17 )
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to the square
Sect(Rβ, LM) - Fun([2], LM(x))

Sect(R<β, LM)
?

- Fun([1], LM(x)).
?

(3.18 )

For this, we observe that cofibrant-fibrant sections are (F, x)-compatible in the sense of Defi-
nition 3.18. Indeed, the functor M→ LM preserves coCartesian arrows with cofibrant domain
and Cartesian arrows over R− with fibrant codomain; given a cofibrant-fibrant section S, its
right restriction RxS : Mat(x)→M(x) is an injectively fibrant diagram, and hence its limit re-
mains [2, Proposition 2.5.6] a limit in LM(x). A dual observation is true for the left restrictions.
Therefore, the square (3.17 ) factors as

Sect(Rβ,M)cf - Sect(Rβ,M)(F,x)
- Fun([2],M(x))

Sect(R<β,M)cf

?
- Sect(R<β,M)(F,x)

?
- Fun([1],M(x)).

?

Using Proposition 3.20, we get the desired map. �

We finish this part by recording the following essential statement, which already appears as
[2, Theorem 2.5.9] and in [6].

Corollary 3.41. LetM be a model category. Then the infinity-category LM is bicomplete.

Proof. By duality, it is enough to prove the colimit part. Theorem 3.37 establishes an equiva-
lence LFun(R,M) ∼= Fun(R, LM) for any Reedy category R. Moreover, if R is direct, then we
have a Quillen adjunction

lim−→R
: Fun(R,M) � M : cR

that by Corollary 3.31 gives an infinity-adjunction

L lim−→R
: Fun(R, LM) � LM : RcR.

We thus conclude that LM has colimits of shape R for each direct Reedy category R. But in
particular that means the existence of pushouts and arbitrary coproducts, and by [18, Proposi-
tion 4.4.2.6] LM thus has all small colimits. �

3.4 On Quillen presheaves

We conclude this paper by applying Theorem 3.37 to the presheaves of model categories
and Quillen adjunctions.

It is known [6, Theorem 7.9.8] that for a model category M and a small category C, one
has the equivalence LFun(C,M) → Fun(C, LM), even if Fun(C,M) has no obvious model
structure ifM is not cofibrantly generated. The theory of Quillen presheaves is rich in structure,
so it is perhaps of no surprise that the same observation applies in this setting:
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Proposition 3.42. (Cf [16, Conjecture 18.3]) LetM→ C be a Quillen presheaf over a small category
C. Then localisingM along the fibrewise weak equivalences yields an equivalence of infinity-categories

LSect(C,M)
∼−→ Sect(C, LM).

In other words, sections of Quillen presheaves can be strictified over an arbitrary 1-categorical base.

It will be convenient to prove this proposition by the end of this subsection.

Remark 3.43. The proof of Proposition 3.42 and of all subsequent results depends only on one
adjoint. Thus everything can be generalised to the case of an opfibration in model categories
M → C which transition functors preserve cofibrations, trivial cofibrations, and colimits. We
have chosen to work with Quillen presheaves as almost all the examples of colimit-preserving
functors between model categories admit right adjoints.

Given a Quillen presheaf M → C, consider a map f : c → c′ and the induced adjunction
f! : M(c) � M(c′) : f∗. Corollary 3.31 supplies us with the infinity-adjunction Lf! : LM(c) �
LM(c′) : Rf∗, and we shall use the same notation to denote the induced adjunction on the
homotopy categories: Lf! : HoM(c) � HoM(c′) : Rf∗.

Lemma 3.44. Let M → C be a Quillen presheaf, and Sl, Sr two sets of arrows of C. Then the
equivalence of Proposition 3.42 induces an equivalence

LSect(Sl,Sr)(C,M)
∼−→ Sect(Sl,Sr)(C, LM)

to the infinity category Sect(Sl,Sr)(C, LM) of Sl-coCartesian and Sr-Cartesian sections, from the
localisation of the full subcategory Sect(Sl,Sr)(C,M) ⊂ Sect(C,M) consisting of all sections S :

C→M such that

i. For each f : c→ c′ ∈ Sl, the induced map Lf!S(c)→ S(c′) is an isomorphism in HoM(c′),

ii. For each f : c→ c′ ∈ Sr, the induced map S(c)→ Rf∗S(c′) is an isomorphism in HoM(c).

Proof. Follows directly from the observations of Corollaries 3.29 and 3.31. �

Corollary 3.45. Let M → C be a Quillen presheaf. Then the higher-categorical limit of the
covariant (respectively contravariant) diagram x 7→ LM(x) is given by the infinity-localisation
LSect(C,∅)(C,M), (respectively LSect(∅,C)(C,M)) consisting of those sections S such that, given any
f : c → c′, the induced map Lf!S(c) → S(c′) (respectively S(c) → Rf∗S(c′)) is an isomorphism
in the homotopy category.

Proof. Direct consequence of [18, Corollary 3.3.3.2], which is itself a consequence of the natu-
rality of the Grothendieck construction [20, Remark 3.1.13]. �
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Quillen presheaves are closely related to the notion of descent. For an exemplary statement,
let B• : ∆ → C be a cosimplicial diagram in C, and A → B• a natural transformation
from the (constant diagram given by) A ∈ C. For a Quillen presheaf M → C, denote by
Sect(B•,M) = Sect(∆, (B•)∗M).

Definition 3.46. Let M → C be a Quillen presheaf. A morphism A → B• in the notation
above satisfies the descent property with respect to M→ C if the induced functor

M(A)→ SectLcart(B
•,M)

is a weak equivalence of relative categories, where SectLcart(B
•,M) is the sub-category of

sections X : ∆→M such that for each α : [n]→ [m], the induced map Lα!X(n)→ X(m) is
an equivalence.

Corollary 3.47. In the situation above, if A → B• satisfies the descent property with respect to
M→ C, then the map A→ B• exhibits LM(A) as a Cat∞-limit of LM(B•).

Proof. Immediate. �

Remark 3.48. Observe that the functor M(A)→ SectLcart(B
•,M) factors as

M(A)→ Fun(∆,M(A))→ SectLcart(B
•,M)

where the first functor is the constant diagram inclusion, and the second one is induced by
applying Sect(−,M) to the map of the cosimplicial diagrams f : A → B•. By Theorem 3.37
and Corollary 3.41, there is an adjunction

Lconst : LM(A) � Fun(∆, LM(A)) ∼= LFun(∆,M(A)) : R lim←−,

even though R lim←− does not in general come from a Quillen functor. We also have an induced
infinity-adjunction

Lf! : LFun(∆,M(A)) � LSect(B•,M) : Rf∗

where f! a f∗ is the Quillen adjunction induced by f : A → B•. Thus to check that
LM(A) → LSectLcart(B

•,M) is an equivalence, it is enough to check that the infinity-
adjunction Lf!Lconst a R lim←−Rf∗ is an adjoint equivalence. This, however, can be done
on the level of homotopy categories. Thus the already known theory of descent for Quillen
presheaves (see e.g. [30, Lemma 2.2.2.13]) generalises to our setting.

There are many examples of Quillen presheaves that live over a base which is equipped
with a subcategory of weak equivalences. Following [15], we introduce

Definition 3.49. A relative Quillen presheaf over a category with weak equivalences (C,WC) is
a Quillen presheaf M→ C such that for each f : c→ c′ in WC the induced Quillen adjunction
f! : M(c) � M(c′) : f∗ is a Quillen equivalence.
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Note that if we take the associated “straightened” functor St(M) : c 7→M(c) and postcom-
pose with the localisation, the induced infinity-functor LSt(M) : C → Cat∞ sends the maps
of WC to equivalences of infinity-categories. It thus comes from an essentially unique functor
LSt(M) : LC→ Cat∞ by applying pullback along C→ LC.

If (C,WC) is small, we can consider the category SectWC
(C,M) consisting of those sections

S such that for each f : c → c′ in WC, both Lf!S(c) → S(c′) and S(c) → Rf∗S(c′) are
isomorphisms in the homotopy category.

Lemma 3.50. Given a relative category (C,WC) and a categorical fibration X→ LC, the pull-back
operation induces a categorical equivalence Sect(LC,X) ∼= SectWC

(C,X), with the latter denoting
the subcategory of sections C→ X which sendWC to equivalences of X.

Proof. We have a (Cat∞-pullback) diagram

Fun(LC,X)
∼
- FunWC

(C,X)

Fun(LC, LC)
? ∼

- FunWC
(C, LC)
?

(3.19 )

with FunWC
(C,X) (and similarly FunWC

(C, LC)) denoting the infinity-category of functors C→
X that send WC to equivalences of X. Both vertical maps in (3.19 ) are categorical fibrations,
so taking strict SSet-pullbacks over idC and C → LC induces the sought-after equivalence
Sect(LC,X) ∼= SectWC

(C,X).

Proposition 3.51. Let M → C be a Quillen presheaf over a small localiser (C,WC). Then the
infinity-category LSectWC

(C,M) is naturally equivalent to the sections Sect(LC,
∫
LSt(M)) of the

unstraightening
∫
LSt(M))→ LC.

Proof. Localising M along the fibrewise weak equivalences, we see that there is a following
diagram of Cat∞-pullbacks:

LM
∼
-

∫
LSt(M) -

∫
LSt(M))

C
? =

- C
?

- LC.
?

(3.20)

The second square is a pullback due to the naturality of the Grothendieck construction. The
first one is the adjoint of the map of Cat∞-functors StL(M) → LSt(M); the latter being an
equivalence is a reformulation of the universality of the localisation LM→ C.

Combining Lemma 3.50 with (3.20), we see that Sect(LC,
∫
LSt(M)) is canonically identi-

fied with the subcategory of those S in Sect(C, LM) that sendWC to Cartesian (or, equivalently,
coCartesian) maps of LM. The conclusion is then reached using Lemma 3.44. �
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Remark 3.52. The above proposition shows that LSectWC
(C,M) serves as a strict model

for the lax limit of the Cat∞-diagram naturally associated to the data of a relative Quillen
presheaf. The situation with the lax colimit is more intricate. In effect, one would like to lo-
calise M along the following class of weak equivalences W(M): those maps α : X → Y such
that the corresponding C-map f : x→ y belongs to W, and either Lf!X → Y or X → Rf∗Y
is an equivalence. However, even with WC saturated, we cannot a priori guarantee that the de-
scribed class W(M) is saturated as well. Thus one cannot conclude that there is an equivalence
between LW(M)M and LSt(M)).

The work [15] proves that when C is a model category, the localiser W(M) is saturated.
More generally, it seems that whenever the base admits a certain calculus of fractions, one can
verify the saturation property of W(M). Conjecturally, W(M) should be saturated if WC is.

Let us finally prove Proposition 3.42. Our strategy will be to replace any small category by
a suitable Reedy category. Given a category C, denote by ∆C its category of simplicies: the
objects of ∆C are given by functors σ : [n]→ C, and the morphisms are natural transformations
[n] → [n′] compatible with maps to C. The category ∆C is a Reedy category with fibrant
constants [8, 22.10], and the assignment σ 7→ σ(n) defines a functor p : ∆C → C, called
pt in [8, 22.11]. The comma-fibres of this functor are moreover related to the comma-fibres
of the original category: one has p/c = ∆(C/c). We shall henceforth write ∆C/c to denote
both categories. The inclusion functor ∆C/c → ∆C is seen to identify the latching categories:
Lat(σ, σ(n)→ c) computed in ∆C/c, is isomorphic to Lat(σ) computed in ∆C, with the map
to c being automatically supplied. This fact will be useful later on.

Our first step is the proof that p : ∆C→ C presents C as the higher-categorical localisation
of ∆C along the subset W consisting of those maps that are sent to identities by p. The proof
that we give below is the corrected version [31, Proposition A.1]: there, the authors in particular
state that p is a coCartesian fibration, and such a claim is false (unfortunately, we committed
the same mistake in an earlier version of this paper). For a different write-up, we invite the
reader to consult [29, 5.3].

Lemma 3.53. The functor p : ∆C→ C is an infinity-localisation along the p-identitiesW, mean-
ing that for any infinity-category X, the infinity-functor p∗ : Fun(C,X) → Fun(∆C,X) is full
and faithful and its essential image consists of all those functors F : ∆C → X that send W to
equivalences in X.

Proof. Factoring p as ∆C
l−→ LW∆C

π−→ C with LW∆C being the infinity-localisation,
it remains to prove that π is an equivalence of (infinity)-categories. Applying the homotopy
category functor to this diagram would give the usual factorisation ∆C→ Ho ∆C→ C through
the one-categorical localisation of ∆C; this observation permits to conclude that π is essentially
surjective.

To show that π is fully faithful, one can use Yoneda lemma which tells us that it is enough
[6, Proposition 4.5.2 (iii)] to verify that the induced left Kan extension π! : Fun(LW∆C, S) →
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Fun(C, S) is fully faithful, with S denoting the infinity-category of spaces. We will show that π!

is part of an adjoint equivalence.

We observe the existence of the following diagram,

FunW(∆C, S)

Fun(LW∆C, S) �
π∗

l∗ -

Fun(C, S),

p∗

-

with FunW(∆C, S) meaning those infinity-functors that send W to equivalences. The functor l∗

is an equivalence by definition. The functor π∗ is right adjoint to π!; it will thus suffice to show
that p∗ is an equivalence.

The left Kan extension along p restricts to FunW(∆C, S), giving an infinity-adjunction

p! : FunW(∆C, S) � Fun(C, S) : p∗.

The surjectivity of p on objects implies conservativity of p∗. Thus if we prove that the unit
map id → p∗p! is an equivalence, the rest will follow from the triangle identities ([6, Theorem
6.1.23]; alternatively one can pass to the homotopy adjunction and use the associated triangle
identities). The pointwise expression for Kan extensions, [6, Proposition 6.4.9], implies that for
each X ∈ FunW(∆C, S), the unit map evaluated at τ : [n]→ C with τ(n) = c takes the form

X(τ)→ lim−→∆C/c
X|∆C/c. (3.21 )

As per [8, 23.5], denote by p−1c the subcategory of ∆C consisting of those simplices σ : [m]→
C such that σ(m) = c and those maps [m]→ [m′] that map m to m′. The notation is from [8]
and is abusive: the category p−1c is not the fibre of p at c. There is however an obvious functor
i : p−1c→ ∆C/c sending σ to (σ, id : σ(n) = c) and this functor admits a left adjoint, sending
(σ : [n] → C, f : σ(n) → c) to the concatenated simplex σ ∗ f : [n+ 1] → C that is σ on first
n + 1 elements and f on the remaining edge (if we took the naive fibre we would not have an
adjunction). The functor i is thus cofinal. Considering then the composition

[0]
{τ}−→ p−1c

i−→ ∆C/c

and taking the colimit of X|∆C/c and its pullbacks at each category, we factor the map (3.21 ) as

X(τ)→ lim−→p−1c
X|p−1c

∼=→ lim−→∆C/c
X|∆C/c.

Since X belongs to FunW(∆C, S), its restriction to p−1c sends all maps to equivalences in S.
The remaining fact that X(τ) → lim−→p−1c

X|p−1c is an equivalence then follows from Lemma

3.54 below since the category p−1c is contractible, possessing the initial object given by the
zero-simplex c. �
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Lemma 3.54. Let X be a cocomplete quasicategory, K a contractible simplicial set and x ∈ K a
vertex. Then for any F : K → X sending all edges to equivalences, the natural map F (x)→ lim−→K

F

is an equivalence.

Proof. In SSet+ factor K[ → ∆0 as a trivial cofibration K[ → LK\ followed by a fibration
LK\ → ∆0. The quasicategory LK is the localisation of K with respect to all edges, hence
LK is a Kan complex. Moreover the functor F induces an infinity-functor F̄ : LK → X. Both
the map K → LK and x : [0]→ K → LK are moreover cofinal, as per [18, Corollary 4.1.2.6].
We thus have lim−→K

F ∼= lim−→LK
F̄ and lim−→LK

F̄ ∼= F̄ (x) ∼= F (x). �

Proof of Proposition 3.42. By Lemma 3.53, the functor p : ∆C → C is the localisation along
the maps W that are sent to identities by p (to distinguish, the fibrewise weak equivalences over
c ∈ C will be denoted W(c)). We can assume the validity of Proposition 3.42 and its corollaries
for Quillen presheaves over Reedy categories. Given a general Quillen presheaf M → C, the
diagram

p∗LM - LM

∆C
?

- C,
?

together with Lemmas 3.50 and 3.44 imply the canonical identification of Sect(C, LM) with the
infinity-localisation of the category SectW(∆C,M) consisting of those sections S : ∆C → M

that send W to (fibrewise) equivalences of M. Note that taking pull-backs of sections induces a
functor

p∗ : Sect(C,M)→ SectW(∆C,M)

that preserves pointwise weak equivalences. It remains to show that p∗ is a weak equivalence
of relative categories.

Observe that p∗ possesses a left adjoint, given by

p!S(c) = lim−→∆C/c
RescS|∆C/c

where Resc : M|∆C/c →M(c) is the usual covariant restriction to the fibre. Since ∆C/c ⊂ ∆C

identifies the latching categories, if S is a Reedy-cofibrant section, then RescS|∆C/c : ∆C/c→
M(c) can be checked to be a Reedy-cofibrant section as well (the verification is the same as
in the proof of (1.) of Lemma 2.18). Using [8, 22.10] we see that the functor p! preserves
weak equivalences between Reedy-cofibrant sections. Since p∗ preserves weak equivalences,
Corollary 3.31 implies the derived adjunction Lp! a Rp∗ between the localisations. It remains
to check that the restriction

Lp! : LSectW(∆C,M) � LSect(C,M) : Rp∗

is an adjoint equivalence. For this, it is enough to verify that the corresponding homotopy
category adjunction Lp! : HoSectW(∆C,M) � HoSect(C,M) : Rp∗ is an equivalence.
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Since the functor p : ∆C→ C is surjective on objects, we have that the functor Rp∗ is con-
servative. Everything will thus follow from the triangle identities if we verify that the unit map
id → Rp∗Lp! is an isomorphism. Given a fibrewise-weakly-constant S ∈ HoSectW(∆C,M),
the unit map evaluated at τ : [n]→ C becomes

S(τ)→ L lim−→∆C/c
RescS|∆C/c (3.22)

where c = τ(n). The map (3.22) is induced by the canonical inclusion i : [0] → ∆C/c

picking up (τ, τ(c) = c) in the following way. Write as usual FunW(∆C/c,M(c)) for the full
subcategory of Fun(∆C/c,M(c)) consisting of X : ∆C/c → LM(c) that send to W(c) the
maps of ∆C/c projecting to identities under the composition ∆C/c→ ∆C→ C. Denoting also
δ : ∆C/c→ [0] the canonical functor, we have the commutative diagram

Ho FunW(∆C/c,M(c)) �
δ∗

HoM(c)

HoM(c)

i∗
?

�
=

HoM(c)

=
?

(3.23 )

and the map (3.22) is the evaluation at RescS|∆C/c of the associated Beck-Chevalley map

i∗ → Lδ! (3.24)

(the homotopy colimit functor Lδ! restricts well to the W-subcategory in question). It will suffice
to prove the invertibility of (3.24). Lemma 3.44 applied to a constant fibration gives an equiva-
lence LFunW(∆C/c,M(c)) → FunW(∆C/c, LM(c)). Thus the diagram (3.23 ) is equivalent in
a compatible manner to the Ho -image of the following diagram of infinity-categories:

FunW(∆C/c, LM(c)) �
p∗

LM(c)

LM(c)

i∗
?
�

=
LM(c).

=
?

(3.25 )

The standard arguments about Beck-Chevalley maps then imply that (3.24) is invertible iff
the Beck-Chevalley map i∗ → p! arising from the (higher-categorical) diagram (3.25 ) is an
equivalence (we also use that the quasicategory LM(c) is cocomplete, Corollary 3.41).

It will be thus sufficient to prove the following. For any X : ∆C/c → LM(c) sending to
equivalences those maps of ∆C/c that project to identities under the composition ∆C/c →
∆C→ C, one has that

X(σ)→ lim−→∆C/c
X

is an equivalence. This is done exactly as in the proof of Lemma 3.53. �
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A Appendix

A.1 Over the simplex category

In what follows, we will identify partially ordered sets, henceforth referred as posets, with
small categories having at most one morphism between each two objects.

Definition A.1. Denote by [n] the category

[n] = 0→ 1→ 2→ ...→ n

with exactly one morphism from i→ j when i ≤ j, and no other morphisms. Denote by ∆ the
full subcategory of Cat consisting of categories [n] for n ≥ 0.

Lemma A.2. Each morphism in ∆ can be factored as a surjection (in the poset sense) followed by
an injection (in the poset sense). Surjections and injections form a factorisation system (∆s,∆i) on
∆ which, together with the natural choice of a degree, deg[n] = n, makes it into a Reedy category.

Proof. Clear. �

Corollary A.3. The category ∆op is a Reedy category for the factorisation system (∆op
− ,∆

op
+ ) con-

sisting of (the opposites of ) injections and surjections.

Definition A.4. A map ρ : [m] → [n] of ∆ is a Segal inclusion, or simply Segal iff it is an
interval inclusion of [m] as first m + 1 elements of [n], i.e. ρ(i) = i for 0 ≤ i ≤ m. In
particular, m should be less or equal than n.

A map ζ : [n]→ [m] of ∆ is anchor iff it preserves the endpoints: ζ(n) = m.

We denote by A, Σ the subcategories of anchor and Segal maps in ∆. It is easy to see that
(A,Σ) is a factorisation system on ∆.

Definition A.5. A Segal factorisation system on ∆op consists of the pair (S ,A ) where S is
the subcategory of Segal maps induced from Σop, and A is the subcategory of anchor maps
induced from Aop.

Lemma A.6. The identity functor sends ∆op
+ to A . �

Definition A.7. A ∆-indexed category is a discrete Grothendieck opfibration π : X → ∆op

(that is, every map of X is π-opcartesian). In particular, there exist a unique, up to isomorphism,
simplicial set representing π through the Grothendieck construction.

We shall often write X instead of π, when this abuse of notation leads to no confusion.

Lemma A.8. Let π : X→ ∆op be a ∆-indexed category. Then
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1. there is a factorisation system (X−,X+) which π- projects to (∆op
− ,∆

op
+ ). We call it the Reedy

factorisation system of X.

2. There is a factorisation system (SX,AX), which π-projects to (S ,A ). We call it the Segal
factorisation system on X.

3. The identity functor id : X→ X preserves the maps of the right class: id(X+) ⊂ AX.

Proof. Immediate. �

Corollary A.9. Let E→ X be an admissible model semifibration over the Reedy factorisation system
(X−,X+), then the category Sect(X,E) is a model category. �

A.2 Normalised model structure

For a variation of the argument of Theorem 2.11, let us look at the following. Let X be a
∆-indexed category. The subcategory X+ ⊂ AX controls degenerations. Recasting the usual
definition,

Definition A.10. An object x ∈ X is degenerate if there exists a non-identity degree-raising
map y → x of X+. An object x is thus non-degenerate iff X+/x = {id : x → x}, or,
equivalently, Lat(x) = ∅.

For the purposes of this subsection, consider a functor E→ X such that

1. It is a semifibration over the Segal factorisation system.

2. The induced semifibration over the Reedy factorisation system (X−,X+) is an admissible
model Reedy semifibration.

3. It is normalised, that is its restriction E → AX is a locally constant fibration, a fibration
for which all the transition functors are equivalences.

Given a section X ∈ Sect(X,E) of such E → X, we can thus conclude that L xX is the
initial object of E(x) for each non-degenerate x.

Definition A.11. A section X is normalised iff it takes any arrow of X+ to an opcartesian arrow
of E→ X.

Lemma A.12. A section X is normalised iff for any degenerate object y ∈ X, the latching map
L yX → X(y) is an isomorphism.
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Proof. Given the definition of a normalised section, we have that for each f : x→ y in X+/y,
the map f!X(x) → X(y) is an isomorphism. One then checks that the latching category
Lat(y) ⊂ X+/y is connected and so the colimit of a constant Lat(y)-diagram with value X(y)

gives X(y). �

Remark A.13. If we take x→ y to be an ordinary degeneracy (if projected to ∆) then X(x)→
X(y) is an isomorphism (note that E(x) ∼= E(y).

Denote by SectN (X,E) ⊂ Sect(X,E) the full subcategory of normalised sections.

Lemma A.14. The category SectN (X,E) admits limits and colimits, which are calculated in
Sect(X,E).

Proof. The colimit part is trivial and is left to the reader. For the limit part, we will use
the Segal factorisation system on X to calculate limits. For the proof, recall also the functor
π : X→ ∆op.

Let x ∈ X, and consider the category x\SX. Given that on the level of ∆, the maps of SX

are interval inclusions, and so we have an equivalence x\SX
∼= π(x) ∈ ∆ ⊂ Cat.

Now, consider a morphism f : x→ x′ in X+. It also means that f belongs to AX, but in any
case, the factorisation system (SX,AX) defines a functor f̄ : x′\SX → x\SX by projecting to
∆, one can examine and check that f∗, after the equivalences x′\SX

∼= πx′ and x\SX
∼= πx,

is just the map
π(f) : πx′ → πx

corresponding to f by projection to ∆op. In all, we constructed the following diagram

x′\SX

f̄
- x\SX

πx′

∼=6

π(f)
- πx.

∼=6

If we note by px : x\SX → X and px′ : x′\SX the natural projections, then the map f̄∗p∗xE→
p∗x′E (cf Proposition 1.45) of prefibrations over x′\SX is in fact an equivalence due to the
normalisation condition, since the natural transformation which induces it, pxf̄ → px′ , lies in
X+ and not just in AX. Hence there is no confusion about lifting E→ X to this diagram. When
computing limits in Sect(X,E), it is done by taking limits of certain sections over categories
like x\SX. It will thus suffice to check that the functor

Sect(x\SX, p
∗
xE)

f̄∗−→ Sect(x′\SX, f̄
∗p∗xE) ∼= Sect(x′\SX, p

∗
x′E)

preserves limits, and the resulting section will then be normalised. But this is equivalent to
showing that the functor

π(f)∗ : Sect(πx,E)→ Sect(πx,E)
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preserves limits. This is sufficient to test when πf is an elementary degeneracy, and in this
case πf : πx′ → πx admits both left and right adjoints. All this suffices to show that, when we
compute a limit of a diagram of normalised sections, the values of the limit on degeneracies
are isomorphisms. �

Denote by Xnd the subcategory of X consisting of nondegenerate objects. Clearly, Xnd ⊂
X−, and moreover it is naturally an inverse Reedy category. Consequently, for each x ∈ Xnd

and a section X : C→ E, we can define M nd
x X , the matching object of X at x in the category

Sect(Xnd,E). It is defined as the limit

M nd
x X = lim←−Matnd(x)

RxX|Matnd(x)

where Matnd(x) ⊂ x\Xnd is the subcategory of all maps out of x in Xnd safe the identity.

The inclusion x\Xnd ⊂ x\X− induces the functor Matnd(x) ⊂ Mat(x), and thus a map
M xX →M nd

x X .

Lemma A.15. Let X be a normalised section. Then the map M xX →M nd
x X is an isomorphism

for each x ∈ Xnd.

Proof. One has to observe, that in x\X−, there are objects x → y such that y may be
degenerate. For such each y, choose a non-degenerate ȳ and a map ȳ → y in X+ degenerating
y. Each such map admits a section y → ȳ, which lies in X−.

Moreover, if y → z is a map in X− to a non-degenerate object, there exists a factorisation
y → ȳ → z in X−, where ȳ is non-degenerate as before. One can see that such observations
are sufficient to prove that the functor Matnd(x) → Mat(x) is final (or right cofinal in the
sense of [12]), and this implies the isomorphism of limits. �

Theorem A.16. The category SectN (X,E) possesses a model structure with limits and colimits
created by the inclusion to Sect(X,E). The classes of cofibrations, fibrations and weak equivalences
are given as follows:

• a map A→ B of SectN (X,E) is a cofibration iff it is a Reedy cofibration in Sect(X,E),

• a map A→ B of SectN (X,E) is a weak equivalence iff it is such in Sect(X,E),

• a map X → Y of SectN (X,E) is a fibration iff for each non-degenerate object x ∈ X, the
relative matching map X(x)→ Y (x)

∏
M xY

M xX is a fibration in E(x).

Moreover M xX ∼= M nd
x X for each nondegenerate x ∈ Xnd.

Lemma A.17. In SectN (X,E),

• a map A→ B is a cofibration and a weak equivalence iff for each x ∈ X, the relative latching
map L xB

∐
L xA

A(x)→ B(x) is a trivial cofibration in E(x),
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• a map X → Y is a fibration and a weak equivalence iff for each non-degenerate object x ∈ X,
the relative matching map X(x)→ Y (x)

∏
M xY

M xX is a trivial fibration in E(x).

Proof. The first is done by restricting to Sect(X+,E) and using Corollary 2.21, just as for
Lemma 2.23. The second is done by restricting to Sect(Xnd,E), and using the dual of Corollary
2.21 together with Lemma A.15. �

Proof of Theorem A.16.

1. The limits and colimits axiom is clear, see Lemma A.14.

2. The weak equivalences of Sect(X,E) satisfy three-for-two, hence the same property ap-
plies for the weak equivalences between non-degenerate sections.

3. The retract stability for the three classes of maps is verified just as in Lemma 2.14.

4. The lifting is proven analogously to the Reedy case. Consider a diagram

A - S

B

f
?

- T

p
?

with, say, f a cofibration and p a trivial fibration, and we keep in mind the result of
Lemma A.17. We observe that each degree zero object x of X has empty latching and
matching categories, and is moreover non-degenerate. Hence in this case the relative
latching map reduces to a cofibration A(x) → B(x), the relative matching map reduces
to a trivial fibration S(x)→ T (x), and finding a lifting is trivial. For the induction step,
consider, for a non-degenerate x ∈ Xnd, the diagram

A(x) - A(x)
∐

L xA

L xB - S(x)

B(x)
?

-

-

T (x)
∏

M xT

M xS

?

- T (x).

-

which admits a lifting as in Reedy case. If y ∈ X is, however, a degenerate object, then
L yA ∼= A(x) and L yB ∼= B(x), and the square

L yA
∼
- A(y)

L yB
? ∼

- B(y)

f(y)
?
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is a pushout, hence the relative latching map is isomorphic to B(y)→ B(y), and finding
the lift in

A(y) - B(y) - S(y)

B(y)

=

?
-

-

T (y)
∏

M yT

M yS

?

- T (y).

-

is trivial, whichever the property the map on the right of the square possesses.

5. Assume given a map of normalised section A → C . Degree zero objects x are non-
degenerate and have no matching-latching categories, so we simply factor our map as
A(x) → B(x) → C(x) using the model structure of E(x). So far, B is trivially a
normalised section.

By induction, we have constructed the factorisation A(y) → B(y) → C(y) for objects
y ∈ X of degree less than n, and B : X<n → E is non-degenerate. For x of degree n,
there is the following diagram

L xA - A(x) - M xB

L xB
?

- C(x)
?
- M xC

?

which exists due to the inductive assumption and provides us with the following map

L xB
∐

L xA

A(x)→ C(x)
∏

M xC

M xB.

If x is non-degenerate, we factor it as

L xB
∐

L xA

A(x)→ B(x)→ C(x)
∏

M xC

M xB.

which, together with maps L xB → B(x) and B(x) → M xB, yields the desired ex-
tension of the factorisation to x. For a degenerate object y, we simply put B(y) =

L yB
∐

L yA
A(y). Then the natural map L yB → B(y) is an isomorphism (since A is

normalised) and the factorisation

L yB
∐

L yA

A(y) = B(y)→ C(y)
∏

M yC

M yB.

is as needed, given the first map satisfies lifting along any map of E(y) and the second
map is not forced to any condition. �
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