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ABSTRACT

Given a family of model categories E → C, we associate to it a homo-
topical category of derived, or Segal, sections DSect(C,E) that models
the higher-categorical sections of the localisation LE → C. The derived
sections provide an alternative, strict model for various higher algebra ob-
jects appearing in the work of Lurie. We prove a few results concerning
the properties of the homotopical category DSect(C,E), and as an exam-
ple, study its behaviour with respect to the base-change along a select
class of functors.
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Introduction

Segal objects. The formalism presented in this paper was developed in the
study of homotopy algebraic structures as described by Segal and generalised
by Lurie. We begin the introduction by describing this context.

Denote by Γ the category whose objects are finite sets and morphisms are
given by partially defined set maps. Each such morphism between S and T

can be depicted as S ⊃ S0 → T . A Γ-space is simply a functor X : Γ → Top

taking values in the category of topological spaces. Each such functor can be
evaluated on the maps in Γ that have the form S ⊃ s → 1, where s ∈ S and 1

is the one-element set. As a result, for each S ∈ Γ we get the map

(i) X(S) −→ X(1)S

and the Γ-space is called Segal [23] if the map (i) is a homotopy equivalence for
all S ∈ Γ.

For each S, we also have the map S
=
⊃ S → 1, and evaluating X on it,

combined with (i), gives the following span in Top:

(ii) X(1)S
∼←− X(S) −→ X(1);

choosing an inverse equivalence to the left map, we get a non-canonical operation
X(1)S → X(1). There is no ambiguity in choice of the inverse in the homotopy
category of topological spaces HoTop: the result is a commutative monoid
structure on X(1) in the homotopy category. The full structure that X(1)

carries is that of an E∞, or a homotopy commutative monoid.
Instead of Γ one can work with other categories. For example, take the

category ∆ which consists of finite categories [n] = 0 → 1 → ... → n (n ≥ 0)
and functors between them. We can then consider functors Y : ∆op → Top such
that Y ([0]) = ∗ and for each n ≥ 1, the map Y ([n])→ Y ([1])n, induced by all the
consecutive interval inclusions [1]→ [n], is a homotopy equivalence. Such Segal
∆-spaces are known to describe homotopy associative, or E1-monoids. The
functor ∆op → Γ which maps [n] to the set of its n generating arrows, allows us
to pull Γ-spaces back to ∆op: every commutative monoid is also an associative
one. There are further examples of small categories that parametrise operations
up to homotopy. For instance, [5] introduces the notion of an operator category
and gives examples of categories that model Em-algebras. The case m = 2 can
also be approached geometrically using the exit path category [27] of the 2-disk.
One can also introduce categories that permit to describe an Em-algebra over
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another algebra. All such categories O come with a functor O→ Γ, so that we
can pull Segal Γ-spaces back to O, reflecting the “initial” property of homotopy
commutative structures.

Let us attempt to replace Top with another homotopical category (by which
we simply mean a category with a distinguished class of weak equivalences)
possessing a monoidal structure. For example, take the category DVectk of
chain complexes of vector spaces over a field k. The maps like (i) will take
the form X(S) → ⊕SX(1), which is not very interesting for the purposes of
algebra. Indeed, the tensor product ⊗k is not Cartesian. The observation of
[20] addresses this issue by making the following construction.

Algebras as sections. Given any symmetric monoidal category (M,⊗, I),
let us define the category M⊗. Its objects are pairs (S, {Xs}s∈S) where S ∈ Γ

and each Xs is an object of M. A morphism (S, {Xs}s∈S) → (T, {Yt}t∈T )

consists of a partially defined map f : S → T , and for each t ∈ T , of a mor-
phism ⊗s∈f−1(t)Xs → Yt. When f−1(t) is empty, the monoidal product over it
equals I. The compositions can then be defined with the help of the coherence
isomorphisms for the product ⊗ and the unit object.

The forgetful functor p : M⊗ → Γ is a Grothendieck opfibration [15]: the
assignment S 7→ M⊗(S) := p−1(S) = MS is functorial, but in a weak way.
Each map f : S → T corresponds to a functor f! : M⊗(S) → M⊗(T ), sending
(S, {Xs}s∈S) to (T, {(⊗s∈f−1(t)Xs)}t∈T ). We see that for composable maps
f, g, one has g!f! ∼= (gf)! and such isomorphisms, while suitably coherent, are
nonetheless not equalities. It is more convenient to work with Grothendieck
(op)fibrations since this allows to keep all these isomorphisms implicit.

Denoting for simplicity two objects of M⊗ as X,Y , any map α : X → Y

factors as X → f!X → Y where f = p(α); the map α is called cocartesian if the
induced map f!X → Y is an isomorphism. Consider now a section of p, that is
a functor A : Γ→M⊗ with pA = id. Demand further that given any inert map
in Γ, that is a map of the form S ⊃ T

=→ T , the induced map A(S)→ A(T ) is
cocartesian. It is elementary to verify that each A(S) is isomorphic to S copies
of A(1) ∈ M⊗(1) = M. The remaining information provided by the section A

equips A(1) with the structure of a commutative monoid in M: the value of A
on the map S

=
⊃ S → 1 gives multiplication A(1)S → A(1), the composition

property insures that everything is determined by this map for |S| = 2 (which
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is forced to be associative) and the action of automorphisms in Γ forces the
multiplication to be commutative.

Setting M = DVectk, it is well known that the homotopy theory of com-
mutative dg-algebras is an inadequate model for E∞-algebras in DVectk if
chark 6= 0. From the fibrational perspective, the reason for this is that the
transition functors of the opfibration M⊗ → Γ lack adjoints (they are multifold
tensor products). One cannot thus apply the model structure results of [3] or
pull back to a suitable Reedy category and use [1]. Another problem arises if
we try different parametrising categories O described above. We can consider
functors O→M⊗ that commute with the projection to Γ, subject to some co-
cartesian conditions. This way one can indeed obtain associative algebra in the
case of ∆op → Γ, but the operator categories parametrising Em-structures will
give commutative algebras for m ≥ 2, due to the Eckmann-Hilton argument.

In order to deal with the problems described above, [20] passes to the world
of symmetric monoidal infinity-categories, and performs all the constructions
on that level. More precisely the machinery of [20] is developed for the infinity-
operads, and is not immediately applicable to arbitrary operation-indexing
categories O → Γ some of which [2] have no operadic analogues (technically
speaking, one can attempt taking a fibrant replacement of O in the category of
infinity-operads, but this will result in the loss of control over the combinatorics
of O). This approach is also, arguably, quite technical: the chapters of [20] de-
voted to colimits of algebras and adjoint functors contain heavy combinatorics
necessary even for colimits of algebras in the presentable setting (in the sense
of [19, 5.5]). These issues motivated us to look for an alternative approach.

Segal sections. Let us pass from M⊗ → Γ to more general Grothendieck
opfibrations E → C over small categories C. For each c ∈ C we thus have
the fibre category E(c), and each map f : c → c′ produces a transition functor
f! : E(c)→ E(c′) (the compositions are respected up to an isomorphism). Define
Sect(C,E) to be the category of sections of E → C; it is defined as the fibre of
the post-composition functor Fun(C,E) → Fun(C,C) (with Fun denoting the
functor categories) over the identity functor. Any section X : C→ E associates
to a map f : c → c′ the map f!X(c) → X(c′) in E(c′); if the latter map is
an isomorphism, the section X is cocartesian along f . We can impose the
cocartesian condition along a subset S of maps of C, and denote the resulting
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subcategory as SectS(C,E). This category is a generalisation of the algebra
objects category in the case of M⊗ → Γ.

Assume now that each E(c) has weak equivalences W(c). For simplicity we
ask here that the transition functors f! preserve weak equivalences. We can
then take the higher-categorical localisation of E with respect to all W(c), and
as observed in [16, 21], the resulting infinity-functor LE → C is a cocartesian
fibration in infinity-categories as defined in [19]. One can use the language of
[19] to define the higher categories Sect(C, LE) and SectS(C, LE). We would
like to understand the properties of these higher categories as a function of the
properties of E, and ideally have convenient strict models for them.

Our answer to this problem is the notion of a derived, or Segal, section (we
will use both names interchangeably in this text). Informally, such an object
X associates to c ∈ C an object X(c) ∈ E(c), and to each map f : c → c′, a
diagram

(iii) f!X(c)
∼←− Xf −→ X(c′)

with f! : E(c) → E(c′) being the transition functor and the left map in (iii)
belonging to W(c). If we were to invert it, we would get a map f!X(c)→ X(c′):
in this sense, a Segal section is a derived version of the concept of a section.
There are also additional data that ensure the coherence with respect to the
compositions in C. Finally, if f ∈ S, then both maps in the diagram (iii) are
required to be weak equivalences.

Below we explain more formally our definition of Segal sections; those readers
that are only interested in the properties of the homotopical category of derived
sections are invited to skip further.

The start is to replace the base category C. The well-known construction
associates to it the category ∆/C, whose objects are functors [n]→ C (in other
words, strings of arrows c0 → ...→ cn), and the morphisms are functors [n]→
[m] over C. The simplicial replacement C of C is defining by simply putting
C := (∆/C)op.

Among the maps in ∆, we can consider those interval inclusions [m] ↪→ [n]

that send 0 to 0. The maps in C with such underlying ∆-map look like

(c0 → ...→ cn) −→ (c0 → ...→ cm)

and are called Segal maps in this paper. The reason for this terminology is
the known fact that the functor h : C → C sending c0 → ... → cn to c0, is
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the (higher-categorical) localisation of C along Segal maps (Proposition 1.15).
As a result, given a category M with weak equivalences W, we can represent
the functors from C to the localisation of M with respect to W (in ordinary or
higher sense) as functors from C to M sending the Segal maps to W. Given such
functor X, its evaluation on the span c0 ← (c0

f→ c1)→ c1 gives a diagram

(iv) X(c0)
∈W←− X(c0

f→ c1) −→ X(c1)

that can be compared with (ii) and is a version of (iii) when no non-trivial
opfibration is involved. In this way, X : C → M can be viewed as a “Segal
functor” from C to M.

The next step of the construction concerns the opfibration E→ C. Its exten-
sion to C can be done using the functor h : C → C. While this technique is
useful when dealing with Quillen presheaves [1], the result is not illuminating
in the case of M⊗ → Γ due to the already mentioned lack of adjoints. Instead,
one has to turn to the transpose fibration E> → Cop (Definition 1.17): it has the
same fibres E(c), and has the same transition functors inherited from E→ C, but
read in a contravariant direction over Cop. Now, any object c0 → ...→ cn ∈ C,
viewed as a functor c : [n]→ C, allows us to write

E(c) := Sect([n], cop,∗E>),

in other words, we consider the sections of the transpose fibration over the string
c0 → ... → cn. Moreover the assignment c 7→ E(c) defines a functor: for each
map α : c → c′ in C, we have the restriction α! : E(c) → E(c′). Using the
Grothendieck construction [26] we can take the associated opfibration denoted
E→ C.

Given an object c = c0 → ... → cn, the functor E(c) → E(c0) = E(c0)

of evaluation at c0 admits a right adjoint that induces an equivalence E(c0) ∼=
Cart([n], cop,∗E>) ⊂ E(c) of E(c0) with the full subcategory of Sect([n], cop,∗E>)

consisting of sections taking all maps of [n] to cartesian maps. A similar sit-
uation happens along any Segal map α : c → c′, and the existing adjunctions
α! : E(c) � E(c′) : α∗ mean that E→ C is also a fibration along Segal maps.

The following is Proposition 2.2 in the main text.

Proposition 1: The category Sect(C,E) is equivalent to the full subcategory
of Sect(C,E) consisting of those X such that for each Segal map α : c → c′,
the image X(α) is cartesian, meaning X(c)

∼→ α∗X(c′).
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If E→ C has the weak equivalences as before, each category E(c) also comes
with weak equivalences, defined value-by-value. The category of derived sections
DSect(C,E) is then defined as the full subcategory of Sect(C,E) consisting of
all X such that each Segal α : c → c′ induces a weak equivalence X(c)

W−→
α∗X(c′) (more generally, in the precedent expression we will replace α∗ by
its right derived functor Rα∗). The weak equivalences of derived sections are
defined value-by-value, giving a homotopical structure on DSect(C,E). Without
further explanation, we also mention that one can take the subset S of maps
of C into account (Definition 2.16), resulting in a full homotopical subcategory
DSectS(C,E) ⊂ DSect(C,E) of S-locally constant derived sections.

Summary of properties. The summary of the discussion above is that given
an opfibration E → C, there exists another opfibration E → C that inherits
weak equivalences from E, and the homotopical category of derived sections
DSect(C,E) is defined as a full subcategory of Sect(C,E) using a weakened
version of cartesian section condition. Let us now describe some of its properties.

We first study the case when the fibres of E→ C are model categories, and the
transition functors preserve fibrations and trivial fibrations (but not necessarily
have adjoints): such opfibrations are called model in this text. One important
example is the case of DVect⊗k → Γ with k any field, whose infinity-sections
model E∞-algebras over k (one can use operation-indexing categories to include
En-algebras over k and other structures). Another example is DVectop,⊗k →
Γ, corresponding to the monoidal structure on the opposite category of chain
complexes over k: studying infinity-sections in this case corresponds to higher
coalgebra objects in LDVectk.

The following proposition is the summary of subsection 2.2:

Proposition 2: Let E→ C be a model opfibration. Then the functor E→ C
is a bifibration in model categories and Quillen pairs, its sections Sect(C,E)

is a model category for the Reedy structure of [1], and the full subcategory
DSect(C,E) ⊂ Sect(C,E) is closed under homotopy limits.

Moreover when the model categories E(c) are combinatorial and the transition
functors f! are accessible, there is a Bousfield localisation of the Reedy model
structure on Sect(C,E) whose fibrant objects are satisfy the derived section
condition. In particular, there exist homotopy colimits of derived sections.
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If the transition functors along the maps from the subset S preserve limits,
then the inclusion DSectS(C,E) ⊂ Sect(C,E) is also stable under limits, yet the
existence of a localised model structure is not guaranteed (the situation is similar
to that encountered in [4]). Nonetheless Proposition 2 allows to establish the
following important result. Given a model opfibration E → C, denote by Ef ⊂
E the subopfibration spanned by the fibrewise-fibrant objects. We can apply
the infinity-localisation of [16] to get a cocartesian fibration in quasicategories
LEf → C. The following result is a consequence of the comparison theorem
given in [1] and is a combination of Theorem 3.3 and Corollary 3.5 in the main
text:

Theorem 3: Let E → C be a model opfibration and S a (possibly empty)
subset of maps of C. The infinity-category SectS(C, LEf ) consisting of sections
C → LEf that send the maps of S to cocartesian maps of LEf is equivalent to
the infinity-localisation LDSectS(C,E), in a manner compatible with the base-
change.

Assume that the fibres of E → C are combinatorial model categories, the
transition functors are accessible, and the transition functors along the maps in
S preserve limits. Then both LDSectS(C,E) and SectS(C, LEf ) are presentable
infinity-categories.

We remark that even in the non-homotopical context, it is not obvious why
the sections of E → C have colimits, as they are indeed not given fibrewise.
One can view the idea of a Segal section to be a smarter way to represent
the information encoded by a higher-categorical section C → LEf . Returning
to the case of DVect⊗k → Γ with inert maps denoted as In, the homotopical
category DSectIn(Γ,DVect⊗k ) provides a strictification of the infinity-category
of E∞-algebras in DVectk and brings with it an alternative to [20]’s proof of the
existence of (homotopy) colimits. The same is true for more general operation-
indexing categories O → Γ, whether or not they have corresponding operadic
analogues.

The procedure of associating E → C to the opfibration E → C can be also
carried out in the situation when E is an infinity-category (and the functor to
C is a cocartesian fibration), and that is explained in subsection 3.2. One then
has that the infinity-category Sect(C,E) is identified with a full subcategory of
Sect(C,E) in a way similar to that explained in Proposition 1. This allows
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to establish the presentability part of Theorem 3 more generally, as stated in
Theorem 3.13 in the main text.

Theorem 4: Let E → B be a cocartesian fibration over a small infinity cat-
egory B, such that each fibre E(b) is presentable and each transition functor
is accessible. Let S be a subset of maps of B such that each transition func-
tor f! along f ∈ S preserves limits (and thus satisfies the right adjoint functor
theorem).

Then the infinity-category of S-cocartesian sections SectS(B,E) is presentable,
with limits and (sufficiently large) filtered colimits calculated fibrewise.

This result does not appear in [19, 5.5], and is relatively immediate if one
adapts the Segal section perspective. It gives, again, an alternative to [20]’s
proof of presentability of the categories of algebras over infinity-operads in pre-
sentably symmetric monoidal categories.

Resolutions. The final section can be viewed as an exercise in the calcu-
lus of simplicial replacements, and involves proving a certain descent state-
ment. Given a functor F : D → C, one can readily induce the pullback
F ∗ : DSect(C,E) → DSect(D, F ∗E). If F presents C as a higher-categorical
localisation of D with respect to F -isomorphisms, denoted F − iso, then Theo-
rem 3 implies that F ∗ is homotopically fully faithful, and its image consists
of DSectF−iso(D, F

∗E). When F belongs to a special class of localisations
(called resolutions in this paper, a condition due to [16, Key Lemma]), the
same statement can be proven without passing by the comparison with the
higher-categorical sections, which reveals interesting simplicial combinatorics
on the way (and that we shall use in our subsequent work).

Organisation of the paper. The first section introduces the combinatorics
relevant to the procedure of replacing E → C with its “simplicial extension”
E→ C, and we proceed to define and study the first properties of derived/Segal
sections, proving Propositions 1 and 2 in the second section. The third section
compares the Segal sections with the higher-categorical sections, which leads
to Theorem 3, and then gives a version of the purely higher-categorical Segal
section construction, resulting in Theorem 4. The resolutions example is treated
in the last, fourth section.
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1. Simplicial Replacements

1.1. Preliminaries. For the dictionary of Grothendieck fibrations, and a def-
inition of a factorisation category, in particular of a Reedy category, we invite
the reader to consult the first section of [1]. Due to the existing ambiguity
we shall often interchange op and co when speaking of opfibrations: they shall
also be called cocartesian fibrations, and the maps will be either cocartesian
or opcartesian. The terms fibration, cartesian fibration will mean the classical,
contravariant Grothendieck fibrations.

One way to produce new factorisation categories out of existing ones consists
of considering presheaves, interpreted as discrete opfibrations.

Definition 1.1: Let B be any small category. A B-indexed category is a (small)
discrete opfibration X → Bop. A morphism of B-indexed categories X → Y is
given by a cocartesian morphism of discrete opfibrations over Bop.

We denote by Cat(B) the category of small B-indexed categories. When
B = [0] the one-object category, Cat([0]) is simply denoted as Cat.

Remark 1.2: Conventionally (as for instance in topos theory [18]) an indexed
category is yet another name for a contravariant pseudofunctor from B to cat-
egories. We adopt a more rigid notion, which is equivalent to a presheaf of sets
over B.

Let now B be a factorisation category, with the factorisation structure given
by (G ,D).

Lemma 1.3: For any B-indexed category π : X → Bop There exists a unique
factorisation system (LX,RX) on X such that π becomes a factorisation func-
tor (X,LX,RX) → (Bop,Dop,G op). Moreover, each morphism of B-indexed
categories becomes a factorisation functor, as well.

Proof. Set LX := π−1(Dop) and RX := π−1(G op).
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Definition 1.4: We shall call the pair (LX,RX) the factorisation system canon-
ically induced from (B,G ,D).

Notation 1.5: If the factorisation category structure on B has a name (as, for
example, the Reedy factorisation system on ∆), then we shall also adopt the
same name for the factorisation system on the B-indexed categories X→ Bop.

Definition 1.6: Let F : B′ → B be a functor. A F -reindexing of a B-indexed
category π : XB → Bop is the pull-back of π along F op. In other words, it is the
left vertical arrow in the pullback square

XB′
FX- XB

B′op

π′
?

F op
- Bop

π
?

Lemma 1.7: Let F : (B′,G ′,D ′) → (B,G ,D) be a factorisation functor and
X → Bop a B-indexed category. Then the functor FX : XB′ → XB induced
by the reindexing operation is a factorisation functor (XB′ ,LXB′ ,RXB′ ) →
(XB,LXB

,RXB
) between the canonically induced factorisation systems.

Proof. Immediate.

As we see, B-indexed categories naturally inherit the factorisation structure
from B, and the interaction with factorisation functors is equally natural.

Proposition 1.8 (Inheritance for indexed categories): Let F : (B′,G ′,D ′) →
(B,G ,D) be a factorisation functor. Then, for any B-indexed category XB, we
have the following:

(1) Given any square

YB′
G- XB

B′op

π′
? F op

- Bop

π
?

with YB′ → B′op a B′-indexed category, the functor G is naturally a fac-
torisation functor G : (YB′ ,LYB′ ,RYB′ ) → (XB,LXB

,RXB
) between

the canonically induced factorisation systems.
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(2) If Dop is a locally Noetherian category (see [1]), then so is the induced
category LXB

. There is also a dual result for the right class.
(3) If F is such that the induced functor D ′op → Dop is a closed immersion

of Noether categories (see [1]), then the induced functor LXB′ → LXB

has the same property, as well.
(4) If F op : B′op → Bop is right-closed (see [1]), then so is FX : XB′ → XB.

Dually for left-closed.
(5) If (B,G ,D) is a Reedy category, then so is (XB,LXB

,RXB
).

Proof. Most proofs are elementary, using the fact that an indexed category is
discretely opfibred over the base. This for example leads to isomorphisms of
comma categories XB/x ∼= (π(x)\B)op, that allows to verify both the Noether
property and the closed immersion condition.

1.2. The replacements.

Definition 1.9: Given a small category C, its simplicial replacement is the unique
∆-indexed category C→ ∆op such that the fibre C([n]) is the set Ob Fun([n],C)

of functors from [n] to C, with morphisms over [n]← [m] given by precomposi-
tion Fun([n],C)→ Fun([m],C).

Lemma 1.10: For C ∈ Cat, the simplicial replacement C → ∆op can be
obtained as the opfibrational Grothendieck construction

∫
NC of the nerve

NC : ∆op → Set ⊂ Cat. The assignment C 7→ C defines a functor from
Cat to the category Cat(∆) of ∆-indexed categories.

Proof. Clear.

Remark 1.11: The assignment C 7→ C does not commute with the operation
of taking opposite categories. For any C, one can construct an isomorphism
of categories

∫
NC ∼=

∫
N(Cop) that commutes with the ∆-indexing up to an

involution reversing the order. Taking the simplicial replacements does not send
equivalences of categories to equivalences over ∆op.

Notation 1.12: An object of C is given by a sequence c0 → ... → cn of
composable morphisms in C. It will often be denoted as c[n] or simply as c

when the ∆-index is not important. We shall also write c[n] : [n] → C for the
associated functor.
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For a functor F : D→ C the induced functor will often be denoted F : D→ C.
One has F(d0 → ...→ dn) = Fd0 → ...→ Fdn.

The following result already appears in [25, 1] and will be revisited in the
section devoted to resolutions.

Lemma 1.13: The assignments c[n] 7→ c0 and c[n] 7→ cn determine functors
hC : C → C and tC : C → Cop that are higher-categorical localisations of C
along the maps that are sent by these functors to identities.

Proof. The opposite of the functor tC is seen to be an opfibration with con-
tractible fibres, one then applies [1, Lemma 3.53]. The functor hC is seen to
be isomorphic, in Cat/C, to the functor tCop , via the isomorphism relating the
simplicial replacements of C and Cop.

Recall (for example, from Appendix of [1]) that ∆ possesses the Reedy facto-
risation system given by surjective and injective maps. By Proposition 1.8, we
get the induced Reedy factorisation system (C−,C+) on C. We shall use the
term degeneracies to call the maps belonging to C+: those are the maps that
lie over surjections in ∆.

There is another factorisation system on ∆, that is given by initial element
preserving maps and left interval inclusions. Let us spell out the induced struc-
ture on C in detail.

Definition 1.14: A map ζ : c[n] → c′[m] is Segal iff its projection in ∆, π(ζ) :

[m] → [n], is an interval inclusion of [m] as first m + 1 elements of [n], i.e.
π(ζ)(i) = i for 0 ≤ i ≤ m. In particular, m should be less or equal to n.

A map ζ : c[n] → c′[m] is anchor, or endpoint-preserving, iff the underlying
map in ∆op preserves the endpoints: π(ζ)(m) = n.

We denote by SC and AC the sets of all Segal and anchor maps respectively.
Note that hC sends C+ and SC to the identity maps of C, and tC sends C+ and
AC to the identity maps in C. The importance of Segal maps is summarised by
the following:

Proposition 1.15: For a small category C, the functor hC : C→ C is a higher-
categorical localisation of C along SC.
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Proof. Lemma 1.13 establishes that hC is a localisation along the maps of C
that project to the identities of C. It will suffice to show that given an infinity-
category X and any functor F : C→ X inverting SC, one has that F also inverts
all hC-identities.

Let α : c → c′ be a map in C such that hC(α) = idc. This implies that α
takes the form

α : (c→ c′ → ...→ c→ c0 → ...) −→ (c→ c′0 → ...)

with c → c′ → ... → c composing into c =→ c. Since Segal maps are inverted
by F , it is clear that the first element preserving maps are F -invertible. It will
thus suffice to show that the following map in C is F -invertible:

α′ : (c
=→ c→ c0 → ...) −→ (c→ c′0 → ...),

as there is a pair of endpoint-preserving maps connecting α and α′ by the means
of a commutative diagram. In turn it will suffice to show that the following map
(connected to α′ by Segal maps) in C is F -invertible:

β : (c
=→ c) −→ (c).

The map β is a one-sided inverse of the degeneracy (c) → (c
=→ c). The latter

is a one-sided inverse of the Segal map (c
=→ c)→ (c). All these maps are hence

F -invertible.

Remark 1.16: Neither the set of Segal maps nor the set of hC-identities is
saturated in the sense one applies when one speaks of localisation [12]: the
saturated set of maps that gives the localisation hC : C → C is given by those
α : c[n] → c′[m] that project to isomorphisms of C.

Proposition 1.15 justifies the idea that, given a homotopical category (M,W),
a functor F : C → M sending SC to W is a suitable weakening of the concept
of a functor from C to M. The action of F on spans in C like

c←− (c
f→ c′) −→ c′,

where the left arrow is Segal, gives a span F (c)
W← F (c → c′) → F (c′), where

the left map is a weak equivalence. On the level of HoM, this span gives a map
F (c)→ F (c′), which one can denote F (f). Applying F to higher-length objects
then ensures higher coherences for the ‘weak functor’ F . This is summarised
by saying that given a relative [8] functor F : (C,SC)→ (M,W) (meaning that
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F takes SC to W), after passing to infinity-localisations one gets an induced
infinity-functor LF : C ∼= LSCC→ LWM.

1.3. Families over the simplicial replacement. We now turn to the ques-
tion of extending an opfibration E → C to C. This can be done in a few ways.
Since we have a functor hC : C→ C, there is a pull-back opfibration h∗CE→ C.
However, unless E→ C is a Quillen presheaf, it is not apparent why the category
of sections of h∗CE→ C carries a model structure. In particular, we cannot use
this approach to study higher algebra in the language of model categories.

Any opfibration p : E → C can be described, up to an equivalence, as a
Grothendieck construction of a covariant functor from C to categories. The
latter is the same thing as a contravariant functor from Cop to categories. The
way to capture this duality without passing to category-valued functors, is the
following.

Definition 1.17: Fix an opfibration p : E→ C. Define a category denoted as E>

as follows:

(1) Ob(E>) = Ob(E)

(2) A morphism from x→ z in E> is an isomorphism class of cospans in E

x −→ y ←− z

such that the left arrow is fibrewise, p(x → y) = idp(x), and the right
arrow is opcartesian.

There is an evident functor p> : E> → Cop which sends a map x −→ y ←− z

to p(y ←− z). A morphism of E> is p>-cartesian iff it can be represented by a
span of the form y

=−→ y ←− z. The functor p> is a fibration, which we call
the transpose fibration of p.

If E→ C equals
∫
E → C for a functor E : C→ Cat, then E> → Cop is equiva-

lent to the (fibrational) Grothendieck construction applied to E : (Cop)op → Cat

viewed as a contravariant functor on Cop. In particular, if E ∼= E0 × C and the
opfibration structure is given by the C-projection, then E> is simply E0 × Cop.
The construction of a transpose fibration that we outlined can be also done
higher-categorically, see [6].

After taking the transpose fibration E> → C of the opfibration E → C, we
can also consider the pull-back fibration t∗CE

> → C. The following proposition
is a manifestation of the duality between E and E>:
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Proposition 1.18: Given an opfibration p : E → C, there is a morphism
T : h∗CE → t∗CE

> commuting with functors to C which sends opcartesian maps
of h∗CE to cartesian maps of t∗CE.

Proof. Consider the category X defined as follows.

• An object of X is a pair (c[n], α) where c[n] = c0 → ... → cn is an
object of C and α : x→ y is an opcartesian map in E which covers the
composition c0 → cn in C (i.e. p(α) = c0 → cn),

• A morphism (c[n], α : x → y) → (c′[m], β : x′ → y′) consists of a map
c → c′ in C and a map γ : x → x′ which covers the induced map
c0 → c′0.

One can check that the natural functor X → C is an opfibration, and that the
assignment (c, α : x→ y) 7→ (c, x) defines an equivalence over C of opfibrations
X
∼→ h∗CE.
On the other hand, consider the assignment (c, α : x → y) 7→ (c, y). We

claim that it defines a functor T̄ : X → t∗CE commuting with projections to C.
Let (f, t) : (c, α : x → y) → (c′, β : x′ → y′) be a map. In particular, we have
the following diagram in E:

(1.1 )

x
t- x′

y

α
?

y′.

β
?

Suppose first that the map t is fibrewise. Then by opcartesian property there ex-
ists a map t′ : y → y′ rendering the diagram (1.1 ) commutative. Remembering

the description of arrows in Definition 1.17, we define T̄ (f, t) = (f, y
t′→ y′

id← y′);
in other words, we view t′ as a fibrewise map of E>.

Next, if t is opcartesian, find an opcartesian map k : y′ → z in E covering
c′m → cn (which is induced from f : c→ c′). The composition kβt and α both
project along E → C to the map c0 → cn = c0 → c′0 → c′m → cn, hence there
is a (fibrewise) isomorphism z ∼= y. This implies that the diagram (1.1 ) can be
completed as

x
t- x′

y

α
?
�t
′

y′.

β
?
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with all arrows opcartesian in E. We put, again, T̄ (f, t) = (f, y
id→ y

t′← y′), thus
viewing t′ as a cartesian map of E>. Any other case of (f, t) can be treated by
reducing to these two cases.

Inverting the equivalence X
∼→ h∗CE and composing with T̄ , we obtain the

desired functor T : h∗CE→ t∗CE.

As we can see from the construction, the functor T : h∗CE → t∗CE acts by
pushing an object x over c0 along the composition of the string

c0
f1→ ...

fn→ cn,

which gives (fn...f1)!x ∈ E(cn). There exists a refinement of this procedure that
remembers much more information.

Definition 1.19: Given c[n] ∈ C, consider it as a functor cop[n] : [n]op → Cop, and
define E(c[n]) to be Sect([n]op, cop,∗[n] E>), the category of sections of the transpose
fibration pulled back along cop[n].

Definition 1.20: For an opfibration E→ C, its simplicial extension is an opfibra-
tion E → C which is the (covariant) Grothendieck construction of the functor
c 7→ E(c). It is characterised by the fibres E(c[n]) ∼= Sect([n]op, cop,∗[n] E>) and
by the transition adjunctions α! : E(c[n]) → E(c′[m]) given by pullbacks along
maps α : c[n] → c′[m].

Lemma 1.21: The assignment c[n] 7→ E(c[n]) = Sect([n]op, cop,∗[n] E>) has the
following properties: for each Segal map α : c[n] → c′[m] there is an induced
adjunction

α! : E(c[n]) � E(c′[m]) : α∗.

When the fibres of E→ C are complete, the right adjoint α∗ exists for all maps
α of C.

Proof. Given α : c[n] → c′[m], the functor α! : E(c[n])→ E(c′[m]) is induced as a
pullback along the underlying map [m]→ [n]. It will thus suffice to prove that
each α! has an adjoint. To do this, consider four different cases:

(1) The map α is a degeneracy, covering a surjection a : [m] � [n]. Given
a section A ∈ E(c′[m]), which can be represented by a diagram Am →
... → A0 (we use this order to underline the opposite character), the
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section α∗A is then represented by the diagram

Aa−1(m) → ...→ Aa−1(0)

where a−1(i) denotes the first element of the inverse image of i ∈ [n]

under a.
(2) The map α covers an injection a : [m] ↪→ [n] which preserves both

endpoints. We use a to identify [m] with its image in [n]. Representing
again A ∈ E(c′[m]) as Am → ... → A0, we set where A(j) → Bi →
A(k) is the factorisation of the arrow A(j) → A(k), with j being the
maximal closest to i (respectively k being the minimal closest to i)
value belonging to [m]. Intuitively, the procedure consists of “filling the
holes”, the elements which are not in the image of a, in the natural and
minimal way.

(3) For the remaining two injections, the one omitting the first or the last
element respectively, the situation is as follows. The Segal maps

(c0 → ...→ cm
f→ cm+1) −→ (c1 → ...→ cm)

omitting the last element are treated similarly to the previous case:
from

A0 ←− ...←− Am
we get a section

A0 ←− ...←− Am ←− f!Am.

Suppose we have a map in C that looks like

(c0 → ...→ cn) −→ (c1 → ...→ cn);

given A1 ← ...← An, we define B0 ← ...← Bn by setting B0 = ∗ to be
the terminal object of E(c0). Next, B1 := A1 × f1,!∗, to correct for the
lack of map to f1,!∗. The procedure then continues, with

B2 := A2

∏
f2,!A1

f2,!B1 and Bk := Ak
∏

fk,!Ak−1

fk,!Bk−1,

which is indeed the application of inductive principle to construct sec-
tions, providing us with the right adjoint just like in Proposition [1,
Proposition 1.31]. Intuitively, the fact that the terminal object is not
preserved by transition functors forces us to “correct” the rest of the
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section. Due to the fact that this rarely happens in practice, the pro-
cedure is in fact trivial, and consists of putting the final object in c0-th
position.

The functor E → C will be our chosen way to extend E → C to C. It is
an opfibration and always a fibration over the Segal maps (and a bifibration if
E→ C is fibrewise-complete).

Remark 1.22: Note that E is not a simplicial replacement of E or E>. In par-
ticular, the fibre of E→ C over an object c[n] is equivalent to Sect([n]op, c∗[n]E

>),
with c[n] regarded as a functor [n]op → Cop. One could view such sections over
an n-simplex as a relativisation and a thickening of the nerve construction. For
example, when E ∼= E0 × C is a constant opfibration, then E(c[n]) is simply the
category Fun([n]op,E0).

Given any c[n] ∈ C, the map c[n] → c0 is Segal. In the induced adjunction,

(1.2 ) E(c[n]) � E(c0) = E(c0),

observe that the right adjoint takes values in the full subcategory Ecart(c[n]) =

Cart([n]op, c∗[n]E
>) spanned by cartesian sections of Sect([n]op, c∗[n]E

>). Note
that for any map α : c → c′, the left adjoint preserves cartesian sections,
giving α! : Ecart(c) → Ecart(c′). The induced opfibration Ecart → C is in fact
equivalent to h∗CE→ C.

Lemma 1.23: Let E → C be an opfibration. Then there is a diagram h∗CE
S→

E→ t∗CE
> of functors over C factoring the functor T of Proposition 1.18. The

functor S preserves opcartesian arrows, and for each c, the induced functor
Sc : E(c0) ∼= h∗CE(c) → E(c) is fully faithful. The image of S consists of the
subopfibration Ecart ⊂ E given by the subcategories of cartesian sections in
E(c[n]).

Proof. The functors of the second assertion are defined as follows. Given c[n] :

[n]op → Cop, the second functor E → t∗CE
> is induced by evaluating a section

X ∈ Sect([n]op, c∗[n]E
>) at n, which corresponds to cn. The first functor, S :

h∗CE → E, is induced by the inclusion Ecart ⊂ E and the equivalence Ecart ∼=
h∗CE. It can be constructed explicitly via the procedure that sends X ∈ E(c0)

to the following diagram in E>:

X ←− (f1)!X ←− ...←− (fn...f1)!X;



20 EDOUARD BALZIN

here c[n] = c0
f1−→ ...

fn−→ cn and (fi)! and the like denote the transition functors
of E→ C. The verification of the rest is elementary.

Remark 1.24: Given an opfibration p : E → C and a string of composable
arrows c[n] : [n] → C, one can consider the category of sections Sect([n], c∗[n]E)

directly induced from the opfibration p. Without going into much detail, we
note that the bifibration over

∫
N(Cop) resulting from the assignment cn 7→

Sect([n], c∗[n]E) is related to studying (weak) sections of the transpose fibration
E> → Cop.

2. Derived, or Segal, sections

2.1. Presections.

Definition 2.1: Given an opfibration E → C, its category of presections is the
category

PSect(C,E) := Sect(C,E).

of sections of the simplicial extension E→ C.

To relate Sect(C,E) to PSect(C,E), recall the functor S : h∗CE→ E of Lemma
1.23. The functor hC also induces the pull-back functor h∗C : Sect(C,E) →
Sect(C, h∗CE).

Proposition 2.2: The assignment X 7→ S ◦ (h∗CX) defines a functor i :

Sect(C,E)→ PSect(C,E). Its essential image consists of the presections sending
the Segal maps SC to cartesian morphisms in E.

Proof. The functor hC : C→ C is a localisation along Segal maps. This readily
implies that the natural pull-back functor Sect(C,E) → Sect(C, h∗CE) is fully
faithful, and its image consists of sections X : C → h∗CE that send the Segal
maps of C to the opcartesian maps of h∗CE. Lemma 1.23 then implies that the
category Sect(C,E) is identified with a full subcategory of Sect(C,E) consisting
of such sections X that

(1) the section X factors through Ecart → C: for each c ∈ C, the value
X(c) is a cartesian section in E(c),

(2) for each Segal map c→ c′, the induced map X(c)→ X(c′) is opcarte-
sian.
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In the presence of the first condition, the second condition is equivalent to
requiring that for each Segal map c → c′, the induced map X(c) → X(c′) is
cartesian. This happens because the adjunction E(c) � E(c′) restricts to an
adjoint equivalence of categories E(c)cart ∼= E(c′)cart whenever the map c→ c′

is Segal. Thus for Segal α : c→ c′, the map α!X(c)→ X(c′) is an isomorphism
iff X(c)→ α∗X(c′) is such.

However, any section X : C → E sending the Segal maps of C to cartesian
maps of E automatically takes values in Ecart, as verified by computing the
value of X on c→ c0.

Remark 2.3: Consider an object c[n] = c0
f1−→ c1

f2−→ ...
fn−→ cn of C. Then

S ∈ Sect(C,E) is sent by the functor above to i(S) such that i(S)(c[n]) is
represented by the diagram

S(c0)←− (f1)!S(c0)←− ...←− (fn...f1)!S(c0)

where (fk...f1)! : E(c0)→ E(ck) is a transition functor along the composition of
fi.

We now put a homotopical structure on E→ C. The notion that leads to the
model structure on presections is the following one:

Definition 2.4: A model opfibration E→ C is an opfibration such that each fibre
E(c) is a model category and the transition functors preserve fibrations and
trivial fibrations of the model structure. Equivalently, given a diagram

X - Y

Z
?

- T
?

with horizontal maps opcartesian and vertical maps in fibres, if X → Z is a
(trivial) fibration then so is Y → T .

Definition 2.5: Say that a map f : cn → cm is

(1) anti-Segal if the underlying ∆-map is an interval inclusion of [m] as last
m+ 1 elements of [n],

(2) convex if the underlying ∆-map preserves initial and final elements.

Lemma 2.6: Any map α : c → c′ can be factored as c → c′′ → c′, where the
first map is anti-Segal and the second map preserves the initial elements.
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Proof. Clear.

Lemma 2.7: Let E→ C be a model opfibration. Then

(1) The bifibration E → C is a Quillen presheaf [17]: the fibres E(c[n]) =

Sect([n]op, cop,∗[n] E>) are model categories with cofibrations and weak
equivalences given valuewise, and for each f : c → c′, the adjunction
f! : E(c) � E(c′) : f∗ is a Quillen pair.

(2) The following base change condition holds. For a commutative square
in C,

x
f- y

z

α
?

g
- t,

β
?

with vertical arrows Segal, and horizontal arrows projecting to initial
element preserving maps in ∆, the induced derived natural transforma-
tion Lf!Rα∗ → Rβ∗Lg! is an isomorphism.

(3) The following base change condition holds. For a commutative square
in C,

x
f- y

z

α
?

g
- t,

β
?

with vertical arrows anti-Segal, and horizontal arrows convex, the in-
duced derived natural transformation Lα!Rf∗ → Rg∗Lβ! is an isomor-
phism.

Proof. The first assertion is an application of [1, Theorem 1] to the fibres of
E. Observe that the fibres E(c[n]) are the categories of sections of the fibra-
tion c∗[n]E

> → [n]op, which is also an admissible model semifibration in the
terminology of [1]. The admissibility is true because the category [n]op and
the associated matching categories have initial objects. We thus can apply the
aforementioned theorem to establish the existence of a model structure on E(c)

in which cofibrations and weak equivalences are defined objectwise. This readily
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implies that the functors

f! : E(c) −→ E(c′)

are left Quillen.
The second and the third assertion follow from the explicit description of

functors in Lemma 1.21.

Corollary 2.8: Let E → C be a model opfibration, then the presection cat-
egory PSect(C,E) = Sect(C,E) has the Reedy model structure of [1, Theorem
1].

Remark 2.9: The fact that in Definition 2.4, the transition functors preserve
the fibrational part, and not the cofibrations, reflects the dual, “coalgebraic”
character of the notions of a presection and of a Segal section (introduced be-
low).

If we consider opfibrations M⊗ → Γ associated to monoidal categories as
explained in the introduction, then to get a model opfibration, one can take M

to be a Cartesian monoidal model category like SSet, but also the categories
DVectk of chain complexes of vector spaces, or simplicial vector spaces, since
over a field k the tensor product is exact (note that there is no restriction
imposed on the characteristic). Another example involves taking M = Nop,
where N is a monoidal model category with all objects cofibrant. For example,
we can take M = DVectopk .

2.2. Homotopical category of Segal sections.

Definition 2.10: Let E→ C be a model opfibration. A presection S : C→ E is
derived, or Segal, if for any Segal map α : c→ c′ the morphism S(c)→ S(c′) is
weakly cartesian, meaning that the induced morphism S(c) → Rα∗S(c′) is an
isomorphism in HoE(c).

We denote by DSect(C,E) the full subcategory of PSect(C,E) consisting of
Segal sections, with the weak equivalences being those induced from presections.

Lemma 2.11: Let S → S′ be a weak equivalence in PSect(C,E) = Sect(C,E).
Then, if one of S, S′ is Segal, so is the other.

Lemma 2.12: Let X be a derived section and α : c → c′ be a map in C
covering an initial element preserving map. Then both X(c)→ Rα∗X(c′) and
Lα!X(c)→ X(c′) are isomorphisms in corresponding homotopy categories.
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Proof. Since α preserves initial elements, we have the following commutative
diagram

c
α- c′

c0

p
? =- c′0

q
?

using this diagram, the base change of Lemma 2.7 and the fact that X is Segal,
we can base change from the two maps of this lemma to studying what happens
at c0 = c′0. And there, everything trivially coincides.

Remark 2.13: Using a similar argument, it is easy to see that a presection X
is Segal iff it satisfies the condition of Definition 2.10 for Segal maps of the form
c[n] → c0.

Consider the following span in C:

c
f−→ c′

c

α

�
c′

β
-

A derived section X would provide us with the span

Lβ!X(c
f−→ c′)

Lβ!Rα∗X(c)

∼
�

X(c′)

-

so that on homotopy level, one has a morphism Lβ!Rα∗X(c)→ X(c′). However,
in this case, Lβ!Rα∗X(c) is isomorphic to Rf!X(c), where Rf! : HoE(c) →
HoE(c′) is the derived transition functor along f . That is, the data of a derived
section give us a section of the opfibration HoE→ C, with Ho applied fibrewise:

Lemma 2.14: Let X ∈ DSect(C,E) be fibrant as a presection. Then the as-
signment c 7→ X(c) naturally prolongs to a section hX ∈ Sect(C,Ho (E)), where
the opfibration HoE → C has localised categories as fibres and right derived
functors of transition functors of E, as transition functors.

Proof. One can check the compositions using Lemmas 2.7 and 2.12.
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Lemma 2.15: Let X be a derived section. Then for any anti-Segal map α :

c[n] → c′[m] such that the maps ci−1 → ci, 1 ≤ i ≤ n −m, are isomorphisms,
the induced map

Lα!X(c[n])→ X(c′[m])

is an isomorphism in HoE(c′[m]).

Proof. Lemmas 2.7 and 2.12 allow to reduce everything to the case of a sin-
gle isomorphism, Lα!X(c0 ∼= c1) → X(c1), and the latter is invertible in the
homotopy category due to Lemma 2.14.

Lemma 2.15 motivates to consider the following definition. Denote by S a
subset of maps of C.

Definition 2.16: Let E → C be a model opfibration. A derived section X ∈
DSect(C,E) is S-locally constant if for any anti-Segal map α : c[n] → c′[m] such
that the maps ci−1 → ci, 1 ≤ i ≤ n−m belong to S, the induced map

Lα!X(c[n])→ X(c′[m])

is an isomorphism in HoE(c′[m]).

The anti-Segal maps appearing in this definition will sometimes be called
S-decolouring. We denote by DSectS(C,E) the full subcategory of S-locally
constant derived sections.

Lemma 2.17: A derived section X ∈ DSect(C,E) is S-locally constant iff for
any map α : c→ c′ projecting to an element of S, the induced map Lα!X(c)→
X(c′) is an isomorphism in HoE(c′).

Proof. Use of base-change similar to the proof of previous lemmas coupled with
the fact that any map of C factors into the composition of an anti-Segal map
and an initial element preserving map.

Lemma 2.18: Let E → C be a model opfibration and S a subset of maps of
C such that for each f ∈ S, the induced transition functor f! preserves limits.
Then for each anti-Segal map α : c[n] → c′[m] such that the maps ci−1 → ci,
1 ≤ i ≤ n−m belong to S, the induced functor α! : E(c[n])→ E(c′[m]) preserves
fibrations, trivial fibrations and limits, and hence homotopy limits.

Proof. It follows from [1, Proposition 1.27] that the limits in E(c[n]) are cal-
culated objectwise in c0, ...cn−m in this particular case, and after that by the
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means of the same inductive procedure as in E(c′[m]). The observation for the
(trivial) fibrations is similar, given their explicit description [1, Definition 2.8].
The conclusion about the homotopy limits follows from the general results of
[12] that reduce the question to the computation of limits of Reedy-fibrant
diagrams that are preserved by the functors like α!.

Proposition 2.19: Let E → C be a model opfibration, S a subset of maps of
C, and E→ C the associated bifibration. Then

(1) if X ∈ DSectS(C,E), then any fibrant and cofibrant replacement of X
is also a S-locally constant derived section,

(2) if X ∈ DSectS(C,E) is fibrant as a section in PSect(C,E) = Sect(C,E)

and f : x→ y is a Segal map in C, then the induced morphism X(x)→
f∗X(y) is a trivial fibration of fibrant objects,

(3) if X• : I → DSect(C,E) is a diagram of derived sections, then its homo-
topy limit in PSect(C,E) is a derived section. If the transition functors
along S preserve limits, then the same result is true for the diagrams
valued in DSectS(C,E).

Proof. The first assertion is a direct consequence of Lemma 2.11.
For the second assertion, we know that X fibrant implies X(x) fibrant for

each x ∈ X of degree 0. In general, we know that X(x)→M xX is a fibration.
Similarly as for simplicial objects in a model category, one can prove that for
any α : x→ y covering an injection [n]←↩ [m] in ∆, the map M xX → α∗X(y)

is a fibration. This implies that X(x) is fibrant and any Segal map x→ y goes
to X(x)→ X(y), a fibration and a weak equivalence.

The final assertion is easily checked due to the fact that the (homotopy) limits
are calculated fibrewise [17] in Sect(C,E) and the commutativity between Rf∗

for a Segal map f : x→ y and homotopy colimits:

R lim←−X•(x)
∼→ R lim←−Rf∗X•(y) ∼= Rf∗R lim←−X•(y).

When the transition functors along S preserve limits, Lemma 2.18 and a dual
calculation permit to check the same for the local constancy condition.

The colimits of derived sections, if exist, are usually not calculated in a fi-
brewise way. However, some abstract existence results can be established if
the original model opfibration E → C has combinatorial fibres and accessible
transition functors. For example, one can state the following:
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Proposition 2.20: Let E → C be a model opfibration such that each E(c)

is left proper combinatorial, and each transition functor f! : E(c) → E(c′) is
accessible. Then there exists a left proper combinatorial model structure on
PSect(C,E) with Reedy cofibrations and fibrant objects given by Reedy-fibrant
objects of DSect(C,E).

Proof. According to [1, Proposition 2.30], each model category E(c), being the
category of sections over a Reedy category, is combinatorial. It is moreover
left proper, as is easily checked using the fact that the colimits are computed
fibrewise. Thus the Quillen presheaf E → C has left proper combinatorial
fibres. This again implies that the category PSect(C,E) = Sect(C,E) is left
proper combinatorial for the Reedy model structure.

The rest is done similarly to [3, Theorem 2.42]. As explained there or at
[1, Lemma 2.31], for each object X ∈ E(c) there exists a section i(X) such
that PSect(C,E)(i(X), Y ) = E(c)(X,Y (c)): indeed, i(X)(c′) ∼=

∐
α:c→c′ α!X.

For each map f : c → c′, one has a canonical map f!X → i(X)(c′), and
hence i(f!X) → i(X). The required model structure is then obtained by left
Bousfield-localising the Reedy structure on PSect(C,E) along the set

{i(f!X)→ i(X) | f : c→ c′ ∈ SC, X ∈ G(c)}

with G(c) denoting, as in [3], the set of cofibrant homotopy generators of E(c).

Proposition 2.20 implies in particular the existence of homotopy colimits of
derived sections, even if the latter are calculated inexplicitly. To see the same
for S-locally constant derived sections, one can attempt to use the formalism
of right model categories of Barwick [4]. However, the question of homotopy
colimits can be approached differently, using the language of higher categories.

3. Higher-categorical aspects

3.1. Behaviour with respect to the infinity-localisation. Our higher-
categorical conventions are the same as those adopted in the third section of
[1], and we will make use of the results of [1] in what follows below.

Let E → C be a model opfibration. The subcategory Ef of fibrewise fibrant
objects forms a sub-opfibration over C with weak equivalence preserving tran-
sition functors. Localising Ef along the totality of fibrewise weak equivalences
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yields [1, 16, 21] a cocartesian fibration in quasicategories LEf → C. The goal
of this subsection is to show that Sect(C, LEf ) is equivalent to LDSect(C,E).

Let us first consider the following diagram:

(3.1 )

Ef � h∗Ef
S- Ef

C
?
�h C

? =- C
?

The functor S was considered in Lemma 1.23, and is the restriction to fibrant
objects of the right adjoint in the adjunction

S : E(c0) = Sect([0], c∗0E
>) � Sect([n]op, c∗[n]E

>) : ev0.

Note that the resulting infinity-adjunction (existing by [1, Corollary 3.31] [21,
Theorem 5.1.1]),

LS : LE(c0) � LE(c[n]) : Lev0

has the property that its right adjoint LS is full and faithful, and its essential im-
age, when restricted E(c0)f , coincides with the full subcategory L(E(c[n])

wcart
f )

consisting of fibrant weakly cartesian sections in Sect([n]op, c∗[n]E
>), that is, of

thoseX : [n]op → E> such that eachX(k) is fibrant and eachX(i)→ α∗X(i−1)

is a weak equivalence. Indeed, the functors

S : E(c0)f � E(c[n])
wcart
f : ev0

are inverse weak equivalences [8] of relative categories.
Given a map c → c′, the covariant transition functor E(c) → E(c′), being

merely a pullback, induces E(c)wcartf → E(c′)wcartf and thus an opfibration
Ewcartf → C. Combining that with the precedent remarks, using the functori-
ality of the infinity-localisation (it can be realised [16] as a functorial fibrant
replacement in marked simplicial sets) we localise the diagram (3.1 ) to obtain
a diagram of cocartesian fibrations of quasicategories

(3.2 )

LEf � Lh∗Ef
LS

∼
- LEwcartf

- LEf

C
?
�h C

? = - C
?

- C,
?

with the arrow LS being an equivalence by [19, Proposition 3.1.3.5].
The naturality of the Grothendieck construction for quasicategories [21, Re-

mark 3.1.13] together with [21, Proposition 5.2.3] imply that the localisation of
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the opfibration Ef → C is universal, meaning that the map Lh∗Ef → h∗LEf is a
cocartesian equivalence over C. On the other hand, since the functor h : C→ C

is an infinity-localisation along the Segal maps (Proposition 1.15), we can iden-
tify certain sections over C with the sections over C. Indeed, given any categor-
ical fibration F → C, there is an induced homotopy pull-back diagram

(3.3 )

Fun(C,F)
∼- FunS (C,F)

Fun(C,C)
? ∼- FunS (C,C)

?

with FunS (C,F) (and similarly for C) being the infinity-category of functors
C → F that send Segal maps of C to equivalences of F. Both vertical maps in
(3.3 ) are categorical fibrations, so taking the pull-back induces an equivalence
Sect(C,F) ∼= SectS (C,F), with the latter denoting the sub-category of functors
C→ F over C sending Segal maps to equivalences of F.

Consequently, the infinity-category Sect(C, LEf ) is identified with the full
subcategory of Sect(C, h∗LEf ) consisting of those X such that for each Segal
map α in C, the map X(α) is cocartesian. For the last statement, one uses the
fact that a morphism of h∗LEf is cocartesian iff its image in LEf is such, a direct
consequence of [19, Remark 2.4.1.4]. We conclude the precedent discussion by
stating the following.

Lemma 3.1: Let E → C be a model opfibration. Then there is a canonically
induced equivalence between the infinity-category Sect(C, LEf ) and the full sub-
category of Sect(C, LE) consisting of those sections X : C→ LE such that

(1) For each c ∈ C, the object X(c) belongs to LEwcart(c).
(2) For each Segal map α in C, the induced map X(α) is cocartesian.

Furthermore, these two conditions are equivalent to requiring that X sends
Segal maps to cartesian maps of LE.

Proof. Only the last sentence requires proof. For this, note that just as in
the 1-categorical case, the infinity-adjunction LE(c) � LE(c′) restricts to an
equivalence of quasicategories LE(c)wcart ∼= LE(c′)wcart whenever the map
c→ c′ is Segal. Thus for Segal α : c→ c′ and X taking value in LEwcart, the
map Lα!X(c)→ X(c′) is an equivalence iff X(c)→ Rα∗X(c′) is such.
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Proposition 3.2: Let E → C be a model opfibration. Then the natural com-
parison functor LSect(C,E)→ Sect(C, LE) induces an equivalence

LDSect(C,E) ∼= Sect(C, LEf ).

This equivalence is compatible with the base change.

Proof. Since E → C is a Quillen presheaf, Theorem 2 (or equally Proposition
3) of [1] imply that LSect(C,E) ∼= Sect(C, LE). Everything then follows from
Lemma 3.1 and [1, Lemma 3.44].

A similar result can be proven for the locally constant derived sections.

Theorem 3.3: Let E→ C be a model opfibration and S a subset of maps of C.
The infinity-category SectS(C, LEf ) consisting of sections C → LEf that send
the maps of S to cocartesian maps of LEf is equivalent to the full subcategory
of Sect(C,E) consisting of those X such that

(1) X sends the Segal maps of C to cartesian maps of LE,
(2) X sends the maps of C hC-projecting to S, to cocartesian maps of LE.

In particular, one has the equivalence LDSectS(C,E) ∼= SectS(C, LEf ) which is
compatible with the base-change.

Proof. Combine Lemmas 3.1, 2.17 and [1, Lemma 3.44].

As an application of this result, let us see what happens in the presentable
setting. The following is a refinement of [19, Proposition 5.5.3.17].

Lemma 3.4: Let p : X→ Y be a presentable bicartesian fibration [19, Definition
5.5.3.2] of quasicategories with Y small, L,R two sets of maps such that the
covariant transition functors of p along L preserve limits.

Let SectL,R(Y,X) denote the full subcategory of Sect(Y,X) consisting of those
sections that send L to cocartesian and R to cartesian maps in X. Then
SectL,R(Y,X) is an accessible localisation of the presentable infinity-category
Sect(Y,X), and hence is presentable itself.

Proof. The presentability of Sect(Y,X) is [19, Proposition 5.5.3.17], and the
proof of the same proposition shows that it suffices to consider Y = [1] and
prove the accessible localisation condition in the following two cases:
Case 1: the inclusion Sect(∅,{0→1})([1],X) ⊂ Sect([1],X) of cartesian sec-

tions into all sections of a presentable fibration X → [1]. This is [19, Lemma
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5.5.3.16] and the fact that the evaluation at 1 ∈ [1] induces an equivalence
Sect(∅,{0→1})([1],X)

∼→ X(1).
Case 2: the inclusion Sect({0→1},∅)([1],X) ⊂ Sect([1],X) of cocartesian sec-

tions into all sections of a presentable fibration X → [1] whose associated
covariant transition functor f! : X(0) → X(1) preserves limits. This can be
solved by applying [20, Proposition 5.4.7.11] or by the following explicit ar-
gument. Note that the evaluation at zero induces a categorical equivalence
Sect({0→1},∅)([1],X) → X(0) (this functor is obtained by applying cocartesian
sections functor to a left marked anodyne map). The association of a func-
tor f! to X → [1] provides, by [19, Definition 5.2.1.1], an inverse equivalence
s : X(0) → Sect({0→1},∅)([1],X) such that for X ∈ X(0), sX(0) = X and
sX(1) = f!X. Thus given any diagram Y : I → Sect({0→1},∅)([1],X) we can
assume, that up to an equivalence, Y = sX, for some X : I → X(0). Taking
limits induces the canonical map

f! lim←−I Y(0) = f! lim←−I X −→ lim←−I f!X = lim←−I Y(1);

and by assumption the only non-invertible arrow here is an equivalence. This
map can be viewed as a section of X→ [1], and by the dual of (2) of [19, Propo-
sition 5.1.2.2] it serves as a limit of Y. The category of cocartesian sections of
X→ [1] is thus closed under limits in Sect([1],X). By a similar argument, using
the fact that f! is a left adjoint, the cocartesian section condition is also stable
under arbitrary colimits. Since Sect({0→1},∅)([1],X) → X(0) is an equivalence,
the category of cocartesian sections is presentable. Thus we have a (co)limit-
preserving inclusion of a presentable category into a presentable category, and
such a functor admits a left adjoint.

The general case follows from

SectL,R(Y,X) = ∩f∈LSect({f},∅)(Y,X)
⋂
∩g∈RSect(∅,{g})(Y,X)

and the same reduction argument as in [19, Proposition 5.5.3.17].

Corollary 3.5: Let E → C be a model opfibration and S a subset of maps
of C. Assume that the fibres are combinatorial model categories, the transition
functors are accessible, and the transition functors along the maps in S preserve
limits. Then both LDSectS(C,E) and SectS(C, LEf ) are presentable infinity-
categories, with limits and sufficiently filtered colimits calculated fibrewise.
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Proof. Proposition 2.30 of [1] implies that the fibres of E→ C are combinatorial
model categories, and Lemma 2.18 shows that the transition functors along the
anti-Segal maps that forget the S-part preserve homotopy limits. Consequently
LE→ C is a presentable fibration satisfying the condition of Lemma 3.4 for the
sets A SS (of anti-Segal maps of C that forget the S-labelled part) and SC (of
Segal maps). It follows from Lemma 3.4 and [1, Lemma 3.44] that the infinity-
category LDSectS(C,E) ∼= Sect(A SS,SC)(C, LE) is presentable, and hence the
same is true for SectS(C, LEf ).

Remark 3.6: The are other ways to use Theorem 3.3 to conclude presentability
of the infinity-category LDSectS(C,E) or of its opposite. Return to the example
of Remark 2.9 given by the opfibration M⊗ → Γ, where M = Nop for a combi-
natorial monoidal model category N with all objects cofibrant. Denoting inert
maps of Γ by In, it is easy to show that the infinity-category SectIn(Γ, LM⊗f )op

that describes homotopy coalgebra objects in N is presentable. To do so, observe
that

SectIn(Γ, LM⊗f )op ∼= SectIn(Γop, LN⊗,>c )

which follows from the relation LM⊗,opf
∼= LN⊗,>c (it follows from [21, Proposi-

tion 5.2.3] that both these fibrations classify the same infinity-functor) and the
interaction of the functor category with the op-involution. Then one can further
note that due to [19, Proposition 5.4.7.11 and Remark 5.4.7.14] the categories
SectIn(Γop, LN⊗,>c ) and Sect(Γop, LN⊗,>c ) are accessible, and [19, Proposition
5.1.2.2] together with the preservation of colimits along inert maps imply that
both SectIn(Γop, LN⊗,>c ) and Sect(Γop, LN⊗,>c ) are cocomplete. Theorem 3.3
then implies that the corresponding derived sections LDSectIn(Γ,M⊗)op that
serve as a rigid model for infinity-coalgebra objects in N form a presentable
infinity-category.

The same proof works if we replace M⊗ → Γ by any other model opfibration
E → C whose fibres are opposite-combinatorial, whose transition functors are
opposite-accessible, and that the transition functors along the subset S preserve
limits. We get that LDSectS(C,E)op is presentable.

3.2. Higher-categorical Segal sections. The combinatorial trick that
leads to derived sections can be reproduced purely in the higher-categorical
setting, and that permits to prove statements like Corollary 3.5 for more gen-
eral higher-categorical fibrations. Let E → C be a cocartesian fibration, with
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E an infinity-category and C an ordinary category. In this subsection we will
explicitly construct a cocartesian fibration E → C which is also cartesian over
Segal maps, and identify Sect(C,E) with Segal sections inside Sect(C,E).

Remark 3.7: In the higher-categorical context, we will usually only use the
word Segal when referring to sections, as everything is “derived” already.

The explicit version of the construction that we present uses the relative
nerve functor of Lurie, recalled below. We can also assume that there is a
functor E : C → SSet+ taking value in fibrant objects (that is, X\ for X a
quasicategory), such that E is equivalent over C to the covariant relative nerve
of E.

Lemma 3.8: Let D : Iop → Cat be a diagram of small categories such that
each D(i) has an initial object di. Let Fi : D(i)→ SSet+ be a family of fibrant-
valued functors, compatible with D in the sense that for each f : i → i′, the
induced diagram

D(i) �
f∗

D(i′)

SSet+

Fi′�Fi -

commutes up to a canonical isomorphism, with f∗ = D(f). Then one has a
map of projectively fibrant functors in Fun(I,SSet+) whose value at i is equal
to

Fi(di)
∼−→ Cart

(
D(i)op,

∫
Fi

)
,

an inverse of the equivalence between the cartesian sections of the contravariant
relative nerve

∫
Fi → D(i)op, and Fi(di).

Note that the assignment i 7→ Fi(di) defines a covariant functor, since a
map f : i → i′ induces a unique map di → f∗di′ in D(i). The assignment
i 7→ Cart

(
D(i)op,

∫
Fi
)
is also covariant, since in view of the marked version of
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[20, Remark 3.2.5.7], there is a pullback diagram∫
Fi �

∫
Fi′

D(i)op
?
� D(i′)op

?

that induces the corresponding map of cartesian sections.

Proof. Let us recall the construction of
∫

Fi → D(i)op. Dualising [20, Definition
3.2.5.2], a map ∆n →

∫
Fi is given by

(1) a map σ : [n]→ D(i)op,
(2) for each (nonempty) subset S ⊂ [n] with the minimal element s, a map

∆S → Fi(σ(s)),
(3) for each such pair S′ ⊂ S ⊂ [n], the commutativity property of the

diagram

∆S′ - Fi(σ(s′))

∆S

?
- Fi(σ(s)).

?

An object of
∫

Fi is thus uniquely determined by a pair consisting of an object
d ∈ D(i)op and x ∈ Fi(d). A morphism (d, x) → (d′, x′) is the data of a map
α : d′ → d in D(i) and a map x→ Fi(α)x′ in Fi(d), just like one expects from
the Grothendieck construction. The forgetful infinity-functor

∫
Fi → D(i)op is

a cartesian fibration, with (d, x)→ (d′, x′) being cartesian iff x→ Fi(α)x′ is an
equivalence.

To construct the map from the proposition, let us instead construct the ad-
joint map D(i)op × Fi(di) →

∫
Fi over D(i)op. This is done as follows. A map

∆n → D(i)op × Fi(di) is just a pair of σ : [n] → D(i)op and τ : ∆n → Fi(di).
We send it to

∫
Fi by taking

(1) the same map σ : [n]→ D(i)op,
(2) for each (nonempty) subset S ⊂ [n] with the minimal element s, take

the composition

∆S ⊂ ∆n τ→ Fi(di)→ Fi(σ(s))

to get a map ∆S → Fi(σ(s)) (here we use that di is initial in D(i)).
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(3) for each such pair S′ ⊂ S ⊂ [n], all the squares are commutative in the
diagram below,

(3.4 )

∆S′ - ∆n τ- Fi(di) - Fi(σ(s′))

∆S

?
- ∆n

=
?

τ
- Fi(di)

=
?
- Fi(σ(s)),

?

and this implies the commutativity of the outer rectangle.

A map ∆1 → D(i)op × Fi(di) is cartesian iff the image of τ : ∆1 → Fi(di) is
an equivalence in Fi(di). It is evidently sent to a cartesian map in

∫
Fi. As a re-

sult, the adjoint map Fi(di)→ Sect
(
D(i)op,

∫
Fi
)
factors through the cartesian

sections. Moreover composing with the evaluation map Sect
(
D(i)op,

∫
Fi
)
→

Fi(di) gives identity. In light of [20, Corollary 3.3.3.2] we have thus constructed
an equivalence

Fi(di)
∼−→ Cart

(
D(i)op,

∫
Fi

)
,

and it remains to check its I-naturality.
Given a map f : i → i′, observe that we have the following diagram coming

from base-change

D(i)op × Fi(di) -
∫

Fi

D(i′)op × Fi(di)

6

-
∫

Fi′

6

D(i′)op × Fi(di′)
?

-
∫

Fi′

=
?

with top row projecting to D(i)op and the bottom square to D(i′)op. The middle
horizontal functor is induced by the pullback property of the relative nerve;
we can construct it exactly in such a way that the bottom square commutes.
Indeed, for each object d′ ∈ D(i′)), we have maps Fi(di) → Fi(f

∗d′) = Fi′(d
′)

that are natural in the d′-argument. We can use them to construct D(i′)op ×
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Fi(di)→
∫

Fi′ similarly to we did above at (3.4 ) and verify everything by hand.
Taking the cartesian sections then gives the diagram

Fi(di) - Cart(D(i)op,D(i)op × Fi(di)) - Cart

(
D(i)op,

∫
Fi

)

Fi(di)

=

?
- Cart(D(i′)op,D(i′)op × Fi(di))

6

- Cart

(
D(i′)op,

∫
Fi′

)
6

Fi′(di′)
?

- Cart(D(i′)op,D(i′)op × Fi′(di′))
?

- Cart

(
D(i′)op,

∫
Fi′

)
.

=
?

One has a canonical isomorphism of infinity-categories

Cart(D(i)op,D(i)op × Fi(di)) ∼= Funlc(D(i)op,Fi(di)),

with the right hand side denoting functors taking all arrows to equivalences.
Under this identification the maps Fi(di) → Cart(D(i)op,D(i)op × Fi(di)) cor-
respond to constant diagram functors, and this proves the commutativity of
the diagram above. Taking its outer rectangle proves the sought-after natural-
ity.

The next lemma will provide adjoints along Segal maps.

Lemma 3.9: Let F → [n] be a cartesian fibration. Let α : [m] ⊂ [n] be
an interval inclusion such that α(m) = n and for each i ∈ [n] not in the
image of α, the fibre Fi has an initial object. Then the pull-back functor
α∗ : Sect([n],F)→ Sect([m],F) has both right and left adjoints α∗ and α!. The
right adjoint furthermore factors through the full subcategory of Sect([n],F)

consisting of those sections that are cartesian over the complement of the image
of α.

Proof. Begin first with the case of i : {1} ⊂ [1]. Given a cartesian fibration
F → [1] and associating to it a functor as in [20, Definition 5.2.1.1] provides,
among other things, us with a functor i∗ : F1 → Cart([1],F) ⊂ Sect([1],F)

such that i∗i∗ = id. The diagram of [20, Lemma 5.5.3.15] (or the relative Kan
extension formalism) then tells us that i∗ is right adjoint to i∗.
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For the left adjoint, note that the initial object ∅ ∈ F0 is also initial in the
whole F thanks to [20, Lemma 5.2.3.4]. Thus for any X ∈ F1 there exists a
map ∅ → X in F that projects to 0 → 1; we can view this map as a section.
Using [20, Corollary 4.3.2.16 and Proposition 4.3.2.17] we see that there thus
exists a functor i! : F1 → Sect([1],F) left adjoint to i∗ such that i∗i! = id.

For the general case, it will be enough to show the existence of adjoints with
required properties for the inclusions β : [n−1] ⊂ [n]. This inclusion induces the
pushout-product map β̄ : [1] ∪[0] [n− 1]→ [n] where [0] includes as 0 in [n− 1]

and as 1 in [1]. Using [20, Lemma 2.1.2.3] for ∅ → [0] and the left anodyne map
[0] ⊂ [n− 1], we conclude that the map β̄ is inner anodyne and thus

Sect([n],F)→ Sect([1],F)×F1
Sect([n− 1],F)

is an equivalence of infinity-categories. It moreover respects the partial cartesian
property: a section [n] → F is cartesian over 0 → 1 iff its image in the fibred
product has a cartesian Sect([1],F)-component. It will thus suffice to construct
the adjoints for the functor

Sect([1],F)×F1 Sect([n− 1],F)→ F1 ×F1 Sect([n− 1],F) ∼= Sect([n− 1],F),

but we can do this simply by taking fibred products of the adjoint triple i! a
i∗ a i∗ constructed before with Sect([n − 1],F) → F1 and remembering that
mappings spaces of fibred products are fibred products of mapping spaces.

Remark 3.10: Implicit in the proof of Lemma 3.9 is the fact that given a
cartesian (or cocartesian) fibration E→ B, the functor Sect(−,E) is left Quillen
with respect to the Joyal model model structure over B, as follows from, for
example, [20, Remark 3.1.4.5 and Proposition 3.1.5.3]. As a consequence all the
fibred products appearing in the proof are also homotopy fibred products.

We are now ready to formulate our higher-categorical variation of derived
sections. Note that given a cocartesian fibration E → C, we will denote by
E> → Cop its transpose or dual, as per usual. It can be obtained through the
Grothendieck construction procedure, or with the help of [6]. The following
proposition summarises the Segal section construction:

Proposition 3.11: Let C be a small category and E → C a cocartesian fibra-
tion. Denoting hC : C → C the initial element functor as before, there exists a
sequence

h∗CE
∼=−→ Ecart −→ E
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of cocartesian fibrations and functors over C, with the first functor being a
cocartesian equivalence and the second also preserving cocartesian arrows. The
fibre of this diagram at c : [n]→ C is

E(c0)
∼=−→ Cart([n]op, c∗E>) −→ Sect([n]op, c∗E>)

with the first functor being an inverse of the evaluation equivalence. The tran-
sition functors between the diagrams for different fibres are induced by the
transition functors of E and the evident restrictions of (cartesian) sections.

Finally, the cocartesian fibrations E → C and Ecart → C are also cartesian
along Segal maps. The composition h∗CE → E induces an equivalence between
Sect(C,E) and the subcategory SectS (C,E) consisting of those sections X :

C→ E that send Segal maps to cartesian maps. This equivalence is compatible
with the base change along 1-functors.

Proof. We can replace E → C by
∫
C

E → C, the covariant relative nerve of a
(projectively fibrant) functor E : C → SSet+. The transpose fibration E> →
Cop can be then replaced by

∫
Cop E → Cop, the contravariant relative nerve of

E. Given c[n] : [n] → C, an object of C, let us denote Ec := E ◦ c[n]. We can
then apply Lemma 3.8 for the diagram Cop → Cat, c[n] 7→ [n] and the system
of functors Ec[n]

. The result is a diagram of functors from C to SSet+ whose
value at c[n] : [n]→ C is

E(c0)
∼=−→ Cart

(
[n]op,

∫
Ec[n]

)
−→ Sect

(
[n]op,

∫
Ec[n]

)
with the contravariant relative nerve underneath. All what remains is to take
the covariant relative nerve and apply Lemma 3.9 for the extra adjoints.

The section identification then proceeds as usual. Given a bicartesian fibra-
tion M → [1] representing an equivalence M0

∼= M1, a section X : [1] → M is
cartesian iff it is cocartesian. Thus any section X : C→ Ecart sends Segal maps
to cartesian maps iff it sends them to cocartesian maps. Since hC : C→ C is an
infinity-localisation along the Segal maps, we have a diagram

Sect(C,E)
∼=←− SectS (C,Ecart) −→ SectS (C,E)

with first arrow an equivalence, and the S -index denoting the Segal section
condition. However, the second arrow is also an equivalence, as it follows from
the description of right adjoints along (c0 → ...→ cn)→ c0, as given in Lemma
3.9, that any Segal section C→ E factors through Ecart.
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Corollary 3.12: Let I be a subset of morphisms of C. Then the infinity-
category SectI(C,E) of I-cocartesian sections is naturally identified with the
infinity-category SectI−loc,S (C,E) consisting of Segal sections that send the
I-coloured anti-Segal maps,

(c0
I→ ...

I→ ck → ...→ cn) −→ (ck → ...→ cn)

(see Definition 2.16), to cocartesian maps.

Proof. A map of C that projects to I can be factored as a composition of an
I-coloured anti-Segal map and of an initial element preserving map. Any Segal
section is automatically cocartesian along the latter type of maps.

Let us now use the higher-categorical Segal sections to see the presentability
of section categories.

Theorem 3.13: Let E → B be a cocartesian fibration over a small infinity
category B, such that each fibre E(b) is presentable and each transition functor
is accessible. Let S ⊂ B1 be a subset of maps such that each transition functor
f! along f ∈ S preserves limits (thus satisfies the right adjoint functor theorem).

Then the infinity-category of S-cocartesian sections SectS(B,E) is presentable,
with limits and (sufficiently large) filtered colimits calculated fibrewise.

This result is not found in [20, 5.5], and can be used to abstractly conclude the
existence of colimits and adjoints of algebras over infinity-operads and operator
categories.

Proof. We already know that SectS(B,E) is accessible, with limits and filtered
colimits of sections calculated fibrewise, as follows from [20, Proposition 5.1.2.2
and Corollary 5.4.7.17]. Choose an infinity-localisation F : C→ B surjective on
objects and morphisms, where C is an ordinary category. This can be done by
taking for example the simplex category of B, see [24]. Denote by F ∗S the subset
of maps of C that F -project to S or to B-equivalences. The induced functor
SectS(B,E) → SectF∗S(C, F ∗E) is then seen to be an equivalence of infinity-
categories: if X ∼= F ∗Y and X is F ∗S-cocartesian, then Y is S-cocartesian since
any map in S has a preimage in F ∗S.

Having a cocartesian fibration E→ C over an ordinary category and a subset
of maps I, we can identify SectI(C,E) with SectI−loc,S (C,E) as per Corollary
3.12. Furthermore, the fibres of E → C are sections of pullbacks of E> → Cop.
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The latter is a cartesian fibration in presentable categories and accessible transi-
tion functors. By [20, Proposition 5.1.2.2 and Corollary 5.4.7.17] in this case we
have that the fibres E(c) are presentable, with colimits calculated objectwise,
which in turn implies that the transition functors of E → C preserve colimits.
This in turn implies that E→ C is a presentable fibration. All that remains is
to check that the I-coloured anti-Segal maps lead to limit-preserving transition
functors.

The following will suffice. Let F → [n] be a cartesian fibration in pre-
sentable infinity-categories and accessible functors. Let ω : [m] ⊂ [n] be an
interval inclusion such that ω(0) = 0. Assume that for each i ≥ m, the
transition functors Fi+1 → Fi preserve limits. Then the pullback functor
ω∗ : Sect([n],F)→ Sect([m],F) also preserves limits.

To prove this statement, fix an inclusion [n −m] ⊂ [m] that is complement
to ω. With the help of [20, Lemma 2.1.2.3], it will be enough to show that
the functor Sect([m],F) ×Fm

Sect([n −m],F) → Sect([m],F) preserves limits.
Given a fibration in complete infinity-categories and limit-preserving functors,
the category of sections is also complete, with limits calculated fibrewise: this
is [20, Proposition 5.4.7.11] together with [20, Remark 5.4.7.13], but can also be
proven by hand. Thus the category Sect([n −m],F) has fibrewise limits. The
category Sect([m],F) is presentable, and the functor of evaluation atm preserves
all limits and colimits by Lemma 3.9. Thus the (homotopy) fibred product
Sect([m],F)×Fm

Sect([n−m],F) is the limit of a diagram of complete categories
and limit-preserving functors. By [20, Proposition 5.4.7.11 and Remark 5.4.7.13]
we once again have that this fibre product is complete with limits calculated in
each category separately, and thus preserved by any projection.

Returning to the proof of the theorem, since the transition functors along
I preserve limits, we can apply the precedent discussion and then conclude
everything using Lemma 3.4.

4. Resolutions

Given a functor F : D→ C and a model opfibration E→ C, we get an induced
pullback functor F∗ : PSect(C,E) = Sect(C,E) → Sect(D,E) = PSect(D,E) on
the categories of presections. This functor trivially preserves weak equivalences,
and also the condition of being a derived section. We thus get the functor

F∗ : HoDSect(C,E)→ HoDSect(D,E)
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on the level of localisations. In some cases, the functor F∗ is full and faithful,
and its essential image is easy to characterise.

Definition 4.1: For a functor F : D → C and c[n] = c0 → ... → cn of C, denote
by D(c[n]) the category

• with objects being pairs of d[n] = d0 → ...→ dn and of a commutative
diagram

Fd0 - ... - Fdn

...

c0

∼=
?

- ... - cn

∼=
?

so that the vertical maps are isomorphisms,
• with morphisms given by commutative diagrams

d0 - ... - dn

...

d′0

?
- ... - d′n

?

such that for each 0 ≤ i ≤ n, the diagram

Fdi - Fd′i

ci

∼=
? =- ci

∼=
?

commutes.

The categories D(c0 → ... → cn) are extensions of the notion of an essential
fibre of a functor.

Definition 4.2:

(1) A functor F : D → C is a resolution if for each c[n] ∈ C, the category
D(c[n]) is contractible (that is, has a contractible nerve).

(2) A functor F : D→ C is a right resolution if
• for each c ∈ C over [0] ∈ ∆, the category D(c) is contractible, and
• for each f : c′ → c in C over [1] ∈ ∆ and d ∈ D(c), the subcategory
F (f, d) ⊂ D(c′

f→ c) given by the (strict) fibre ofD(c′
f→ c)→ D(c)

over d, is contractible.
(3) A functor F : D→ C is a left resolution if

• for each c ∈ C over [0] ∈ ∆, the category D(c) is contractible, and
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• for each f : c′ → c in C over [1] ∈ ∆ and d ∈ D(c), the subcategory
F (d′, f) ⊂ D(c′

f→ c) given by the (strict) fibre of D(c′
f→ c) →

D(c′) over d′, is contractible.

Lemma 4.3: If F : D→ C is a right or left resolution, then F is also a resolution.

Proof. We prove the right part, the left part being dual, Inductively, assume
we have proven the resolution property for each c′[k] with 0 ≤ k < n. Then

for an object c[n] = c0
f→ c1 → ... → cn we have the associated functor

D(c0
f→ c1 → ... → cn) → D(c1 → ... → cn). This is an opfibration over

a contractible category, with fibres equivalent to F (f, d) for some d ∈ D(c1).
Quillen’s Theorem A implies then the contractibility of D(c[n]).

Lemma 4.4: If F : D→ C is a prefibration (and, by convention, an isofibration)
with contractible fibres, then it is a right resolution.

Dually, if F : D→ C is a preopfibration (and, by convention, an isofibration)
with contractible fibres, then it is a left resolution.

Proof. Since F is an isofibration, the categories D(c) and D(c′ → c) are equiva-
lent to their strict analogues: the strict fibre F−1(c) and the category of arrows
d′ → d with F (d′ → d) equal to c′ → c. It is then easy to see that the fibres
of D(c′ → c) → D(c) have terminal objects for a prefibration, and the fibres
of D(c′ → c) → D(c′) have initial objects for a preopfibration, and hence are
contractible. Quillen’s Theorem A, again, implies the result.

This example motivates the intuition behind left (respectively right) resolu-
tions as covariant (respectively contravariant) families of contractible homotopy
types, represented in categories, indexed by the base category C.

Lemma 4.5: If p : D � C : i is an adjunction and i is full and faithful, then p
is a resolution. An equivalence of categories is a resolution.

Proof. Every fibre D(c0 → ...→ cn) has a terminal object given by ic0 → ...→
icn (note that pi(c0)→ ...→ pi(cn) is isomorphic to c0 → ...→ cn).

In [16, Key Lemma], it is shown that a resolution F : D→ C exhibits the cate-
gory C as a higher-categorical localisation of D with respect to F -isomorphisms.
Let us reproduce the argument here.
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Proposition 4.6 (Hinich’s Lemma): Let F : D → C be a resolution. Then
F induces an equivalence LD ∼= C, where we infinity-localise D along the set
F ∗Iso(C) of all maps of D that are sent by F to isomorphisms in C.

Proof. It is enough to show that

(D, F ∗Iso(C)) −→ (C, Iso(C))

is a weak equivalence of relative categories. Following [8], one has to show that
for each [n], the induced functor

FunF∗Iso(C)([n],D)→ FunIso(C)([n],C)

is a homotopy equivalence; here the sub-index of Fun means that we take only
those natural transformations that belong to (F -)isomorphisms. The comma-
fibres of the functor above are given by D(c0 → ...→ cn).

The comparison between ordinary sections and derived sections carried out in
3.1 and the Key Lemma of Hinich readily implies that derived sections on C are
identified with the derived sections on D which are locally constant along the F -
isomorphisms. It turns out however that proving the same statement internally
to the language of derived sections, without passing by the comparison of [1,
Theorem 2], leads to some interesting simplicial combinatorics.

Denote as usual by DSectS(C,E) the category of S-locally constant derived
sections. We prove the following result independently of the comparison carried
out in 3.1:

Proposition 4.7: Let F : D→ C be a resolution, S ⊂ C a subset, and E→ C

a model opfibration. Then the functor F∗ : DSectS(C,E) → DSectF∗S(D,E) is
a weak equivalence of relative categories, meaning the equivalence of induced
simplicial (or higher-categorical) localisations.

Remark 4.8: For many uses it is already sufficient to know the weaker state-
ment, that the functor F∗ : HoDSectS(C,E) → HoDSectF∗S(D,E) is an equiv-
alence. However proving such a weaker statement often gives more for free.
To verify that a given relative functor is a weak equivalence, one can often use
the following criterion. Let F : M � N : G be a Quillen adjunction with G

preserving all weak equivalences, and assume that there is a full subcategory
M0 ⊂ M closed under the weak equivalences of M. If G factors through M0

and the homotopy category adjunction LF : HoM � HoN : RG restricts to
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an equivalence between HoM0 and HoN, then the same is true for the induced
higher-categorical adjunction existing thanks to [11, 21], and so G : M → M0

gives an equivalence after applying the higher-categorical localisation functor.
Thus in practice one is left working with Quillen adjunctions and their restric-
tions, as we shall indeed do later in this section.

4.1. Relative comma objects.

Notation 4.9: For a ∆-indexed category π : X → ∆op, the notation x � y

means that the map is a degeneracy, that is the underlying map π(y) � π(x)

is a surjection in ∆.

Definition 4.10: Let F : X→ Z← Y : G be a diagram of ∆-indexed categories.
The associated ∆-relative comma object F �G is the full subcategory of the or-
dinary comma-category F/G consisting of all triples (x, y, F (x) � G(y)) where
the map F (x) � G(y) is a degeneracy.

By definition, F � G comes with projections to both X and Y. We will also
use the notation F 
G to denote G�F . If one of the functors is an identity, we
will write, as is customary for comma categories, F � Y instead of F � idY and
the like. To know more about the relative comma objects, the following may
be of use.

Lemma 4.11: Let [1] be the usual arrow category. Then the full subcategory
Arrs(∆) of the arrow category Fun([1],∆) consisting of surjective arrows, is
naturally equipped with a Reedy category structure. The natural source and
target projections from Arrs(∆) to ∆ are compatible with the Reedy structure.

Proof. Any map between two surjective arrows in ∆ is represented by a com-
mutative square. Using the injection-surjection factorisation system, we get the
diagram

[n] -- [n′′] ⊂- [n′]

[m]

??
-- [m′′]

?
⊂- [m′]

??

in which it is easy to check that the middle vertical arrow is also a surjection.
To see the Reedy category structure, set deg([n] � [m]) = n+m.
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Corollary 4.12: Let F : X → Z ← Y : G be a diagram of ∆-indexed cate-
gories. Then the category F 
G is a Arrs(∆)-indexed category, hence a Reedy
category, and both functors F 
 G → X and F 
 G → Y are compatible with
the Reedy structure.

Proof. Immediate from Proposition 1.8.

Lemma 4.13: For a ∆-indexed functor F : Y → X, the projection F 
 X → X

is a Reedy functor which is moreover an opfibration over face maps of X.

Proof. Corollary 4.12 implies that the projection is Reedy. Now, fix a face map
f : x → x′ and o ∈ F 
 X with p(o) = x. Projecting these data to ∆, we
find ourselves with an injection ϕ : [n] ↪→ [m] and a surjection ω : [k] � [m]

representing the object o. Form the pullback square

[l] ⊂ - [k]

[n]

??
⊂
ϕ- [m]

ω??

which exists for this particular configuration of arrows, and use the fact that
F 
X is discretely fibred over Arrs(∆) to uniquely reconstruct the map o→ f!o

in F 
 X.

In the proof above, note that if f is a degree-lowering map, then so is o→ f!o.

Definition 4.14: A functor G : R→ R′ between Reedy categories is called right-
compatible, if it preserves the Reedy structure and in addition for each x ∈ R,
the induced mapMat(x)→Mat(Gx) is initial relative to R′, by which we mean
that for any functor X from R′ to a complete category, there is a (naturally
induced) isomorphism

lim←−Mat(Gx)
X|Mat(Gx)

∼= lim←−Mat(x)
G∗X|Mat(x).

Corollary 4.15: The functor pX : O := F 
 X → X is a right-compatible
functor of Reedy categories.

Proof. The opfibration property over face maps yields us an adjunction between
the matching categories

L : Mat(pXo) �Mat(o) : R
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where R is the canonical functor induced by pX. The functor L, being a (fully
faithful) left adjoint, is initial. The composition of L with the natural projection
p : Mat(o)→ O→ X coincides with the projection q : Mat(pXo)→ X. We thus
can observe that for any functor X : X → M valued in a complete category,
there is the following sequence of isomorphisms

lim←−Mat(o)
p∗X ∼= lim←−Mat(pXo)

L∗p∗X ∼= lim←−Mat(pXo)
q∗X

which implies right-compatibility.

The main result of this subsection is the interpretation of the higher categori-
cal localisation property of resolutions in the context of simplicial replacements:

Proposition 4.16: Let F : D → C be a functor. Then for the functor F :

D → C, the projection pC : F 
 C → C is a right-compatible Reedy functor.
Moreover, if F is an isofibration and a resolution, then the functor pC is a left
resolution.

A proof is given below. We can thus produce the following technical definition.

Definition 4.17: Let F : Y→ X be a ∆-indexed functor. F is called a resolution
if the associated functor F 
 X→ X is a left resolution.

Remark 4.18: Due to X being a Reedy category any functor Y → X is auto-
matically an isofibration.

In the course of the proof, we shall need an auxiliary lemma about cofinal
maps.

Lemma 4.19: Consider the diagram

E
f- F

D

p
?

g
- C

q
?

and assume that p, q are opfibrations, and both g and all fx : E(x) → F(g(x))

(induced by taking fibres over x ∈ D) are homotopy cofinal. Then the map f
is homotopy cofinal.
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Proof. For a diagram X : F → Top, we have that the map hocolimE f
∗X →

hocolimFX decomposes in HoTop as follows:

hocolimE f
∗X ∼= hocolimD Lp!f∗X ∼= hocolimD g∗Lq!X

∼= hocolimC Lq!X ∼= hocolimFX.

Here the first and the last isomorphisms are due to the properties of homotopy
left Kan extensions as homotopy adjoints, the third one uses homotopy cofinality
of g and the second one follows from the fact that the base change Lp!f∗ → g∗Lq!
being an isomorphism, which follows from the requirement of the homotopy
cofinality condition on the fibres and the fact that one calculates (Lp!Y )(d) as
hocolimE(d) Y |E(d), and similarly for Lq!.

Proof of Proposition 4.16. An object of F 
 C is represented by a surjection
σ : [k0 + ...+ kn] � [n], an object

d[k0+...+kn] = d00 → ...→ dk00 → d01 → ...→ dknn

of maps in D such that pC(d[k0+...+kn]) is equal to

σ∗c[n] = c0 → ...→ c0 → c1...→ cn

with each ci appearing ki+1 times in a row. Sending d[k0+...+kn] to d
0
0 → d01 →

...→ d0n is seen to produce a functor

τc[n]
: (F 
 C)(c[n])→ D(c[n]).

Effectively, we are taking the beginning of each sub-division of d[k0+...+kn],
which looks similar to (but is different from) the projection from the simplicial
replacement of a category to the category itself.

We now prove that the functors τc[n]
are homotopy cofinal, hence induce

homotopy equivalences. For the case of a single object, c = c0, we see that we
are simply comparing the category D(c) and its simplicial replacement. And
it is well known that for any category X, the initial element functor X → X is
homotopy cofinal.

By induction, consider the following diagram

(F 
 C) (c[n])
τn- D(c[n])

(F 
 C) (c[n−1])
? τn−1- D(c[n−1])

?
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with c[n−1] = c1 → ... → cn and both vertical functors given by natural pro-
jections. The bottom arrow τn−1 is homotopy cofinal, both vertical arrows are
opfibrations, and the restriction of τn on the fibres of the left arrow gives, again,
the standard functor between a category and its simplicial replacement. Thus
τn is homotopy cofinal by Lemma 4.19.

To continue, we also need to study the fibres of the projection

(4.1 ) (F 
 C)(c′[k] → c[n])→ (F 
 C)(c′[k]).

Fix a morphism s : c′[k] → c[n] in C and an object (d, c′[k], f) in (F 
 C)(c′[k]).
Denote by Fibre(s,d, c′[k], f) the fibre of the projection (4.1 ) over (d, c′[k], f).

An object of Fibre(s,d, c′[k], f) is, by definition, an object (d′, c[n], f
′) and a

morphism s′ : d→ d′ such that s ◦ f = f ′ ◦F(s′). Since C is discretely opfibred
over ∆, the problem is completely defined by its image in ∆. The category
Fibre(s,d, c′[k], f) does not, thus, depend on the exact detail of the categories
D,C, so we can replace them with one-object categories. Effectively, we are
given a map g : [n] → [k] and a surjective map h : [m] � [k], and we consider
triples [m′], h′, g′, with h′ : [m′] � [n] surjective, g′ : [m′]→ [m] arbitrary, and
h ◦ g′ = h′ ◦ g.

Factor [n]
g→ [k] as a surjection and an injection, [n]

gs→ [n′′]
gi→ [k], and

observe that we can take pullbacks of surjections along gi, with results being
surjections. We thus see that we are studying the category of possible diagrams

[m′] -- [m′′] ⊂- [m]

[n]

?? gs-- [n′′]

??
⊂
gi- [k]

h??

where the whole right (pullback) square and gs are fixed. The data of [m′] � [n]

is equivalent to an object of ∆n+1. Specifying a compatible map [m′] → [m′′]

then gives us a functor L : (∆n+1)op → Set: there are no non-trivial morphisms
between two different liftings. Moreover, if we denote by gs,∗ : ∆n+1 → ∆n′′+1

the post-composition functor, we see that L ∼= g∗s,∗S, where S : (∆n′′+1)op →
Set is the functor represented by [m′′] � [n′′].

It will thus suffice to prove the following. Consider any surjection g : [n] � [k],
and the induced functor g∗ : ∆n+1 → ∆k+1. Then we need to show that for
any representable functor S : (∆k+1)op → Set, the n + 1-fold simplicial set
(g∗)

∗S is contractible. By induction on k, it suffices to consider the case k = 0.
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Take the diagonal embedding δ : ∆ → ∆n+1. Then |δ∗(g∗)∗S| is equivalent to
|(g∗)∗S|, so it suffices to prove that for any X : ∆op → Set, one has a homotopy
equivalence |i∗n+1X| ∼= |X|, where in+1 = g∗ ◦ δ : ∆ → ∆. Explicitly, in+1 acts
exactly as n+1-fold edgewise subdivision functor, and |i∗n+1X| is homotopically
equivalent (actually homeomorphic) to |X| for any simplicial set X.

4.2. Sections over relative comma objects. In the following, it will be
useful to axiomatise the relevant properties of the functor E→ C.

Definition 4.20: Let X be a ∆-indexed category. A model Segal bifibration over
X is a bifibration E→ X with the following properties.

(1) The bifibration E→ X is a Quillen presheaf: the fibres E(x) are model
categories, and for each f : x→ y, the adjunction f! : E(x) � E(y) : f∗

is a Quillen pair.
(2) The following base change condition holds. For a commutative square

x
f- y

z

α
?

g
- t

β
?

with vertical arrows Segal, and horizontal arrows projecting to ini-
tial element preserving maps in ∆, the induced natural transformation
Lf!Rα∗ → Rβ∗Lg! is an isomorphism.

By [1, Theorem 1] we have that the category of sections Sect(X,E) carries a
Reedy model structure.

Definition 4.21: Let E → X be a model Segal bifibration, as described above.
A section X : X→ E is called Segal if for any Segal map f : x→ y the induced
morphism

X(x)→ Rf∗X(y)

is an isomorphism in HoE(x).

We denote by SectS (X,E) the corresponding full subcategory.

Lemma 4.22: Let X be a Segal section of E → X. Then for each degeneracy
s : x� y of X, both induced maps X(x)→ Rs∗X(y) and Ls!X(x)→ X(y) are
isomorphisms in HoE(x) and HoE(y) respectively.
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Proof. Similar to Lemma 2.12.

For a functor F : Y→ X, we would like to study what happens when we lift
Segal sections from X to F 
 X via the natural projection pX. In general, the
latter is an opfibration over face maps, which implies the following.

Proposition 4.23: Let E→ X be a model bifibration over a ∆-indexed cate-
gory X, and p : O → X be a right-compatible Reedy functor. Then there is an
induced Quillen adjunction

p! : Sect(O, p∗E) � Sect(X,E) : p∗

where the right adjoint is the pullback functor.
Furthermore, if p is a left resolution, then the pushforward Lp! admits a

simplified expression

Lp!X(x) ∼= L lim−→O(x)
X|O(x),

suitably functorial in x.

Proof. By definition, the functor p identifies the matching objects computed
for o in O with those of its image p(o). This permits to verify that p∗ preserves
Reedy fibrations and trivial Reedy fibrations. Its left adjoint, p!, is not hard
to compute. Given x ∈ X and a section Y : O → E, denote by p/x the usual
comma category fibre consisting of pairs (o, p(o)→ x); we then have

p!Y (x) ∼= lim−→p/x
ResxY |p/x

with Resx : Sect(p/x,E) → E(x)p/x being the restriction functor induced by
the opfibration structure on E. The category p/x is Reedy with the same
latching objects as in O, and the functor Resx, as can be checked, preserves
(trivial) Reedy cofibrations. This implies the same expression for the derived
functor,

Lp!Y (x) ∼= L lim−→p/x
LResxY |p/x.

It remains to see that the inclusion functor i : O(x)→ p/x is homotopy cofinal
in the case of a left resolution. For this, we consider the categories z\i, where
z = (o, p(o) → x) is an object of the comma category p/x. One can see that
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the category z\i is the category of commutative squares

o - o′

p(o)
?

- x
?

where the upper left object and the bottom arrow are fixed. It is the same
category as the fibre over o of the projection O(p(o)→ x)→ O(p(o)), and it is
contractible. Which in turn implies that we can restrict the homotopy colimits
from p/x to O(x).

Corollary 4.24: In the situation of Proposition 4.23, if the functor p : O →
X is a left resolution, then the pullback functor p∗ factors through the full
subcategory Sectloc(O, p

∗E) consisting of those sections Y : O → p∗E which
send fibrewise maps in O to weak equivalences in the fibres of E. Moreover
p∗ : Sect(X,E)→ Sectloc(O, p

∗E) is a weak equivalence of relative categories.

Proof. For Y = p∗X, we see that

Lp!Y (x) ∼= L lim−→O(x)
X(x) ∼= X(x)

since the category O(x) is contractible. Conversely, given Y which is homotopi-
cally constant on the fibres, we have that for any o ∈ O(x), which exists since
O(x) is nonempty, the natural map Y (o) → L lim−→O(x)

Y is an isomorphism in
HoE(x) [10]. However, L lim−→O(x)

Y ∼= (p!Y )(x) ∼= (p∗p!Y )(o).

Returning to the case of the relative comma category F 
 X for F : Y → X,
we note that, besides pX, there is another projection functor pY : F 
 X → Y,
which is also fairly special.

Lemma 4.25: The functor pY is a discrete opfibration admitting a fully faithful
right adjoint iY : Y → F 
 X such that F = pXiY. The functor pY is also a
right-compatible Reedy functor.

Proof. The right adjoint is easy to see, and is given by sending y ∈ Y to iYy =

(y, F (y)
=
� F (y)), its fully-faithfulness is then obvious. Its opfibration property
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is also apparent, as the diagram

F (y) - F (y′)

x

66

can be completed to

(4.2 )

F (y) - F (y′)

x

66

- x′

66

using the face-degeneracy factorisation system inherited from ∆. As in Corol-
lary 4.15, the lift (4.2 ) allows us to conclude that pY is right-compatible.

Proposition 4.26: Let E→ X be a model Segal bifibration over a ∆-indexed
category X, and F : Y → X be a ∆-indexed functor. Then the functor pY :

F 
 X→ Y induces a Quillen adjunction

i∗Y = pY,! : Sect(F 
 X, p∗YF
∗E) � Sect(Y, F ∗E) : p∗Y

where iY is the functor from Lemma 4.25. The functor p∗Y is a weak equivalence
between the relative category Sect(Y, F ∗E) and the full subcategory of Sect(F 

X, p∗YF

∗E) consisting of those Y such that for each pY-fibrewise map f in F 
X,
the induced map Y (f) is a weak equivalence.

Proof. The adjunction i∗Y a p∗Y is easy to verify, and the right-compatibility of
pY makes its pullback right Quillen. We now study the essential image of pY.
Note that for each y, the fibre y
X of the opfibration pY contains a final object
iYy, and is in particular contractible. In a way similar to Corollary 4.24, we
can now see that the essential image of Rp∗Y consists of sections homotopically
constant on fibres.

4.3. Comparing the Segal sections.

Definition 4.27: A map s : o → o′ of F 
 X is Segal if both its projections pXs
and pYs are Segal maps in X and Y respectively.
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Lemma 4.28: Let

(4.3 )

[l] �
α

[k]

[n]

??
�β [m]

??

be a diagram in ∆.

(1) If the map α is a left (respectively, right) interval inclusion, then we can
factor (4.3) as

[l] �
α

[k] �
=

[k]

[n]

??
�γ [m′]

??
�ζ [m]

??

with γζ = β, γ being a left (respectively, right) interval inclusion, and
ζ a surjection.

(2) If the map β is a left (respectively, right) interval inclusion, then we can
factor (4.3) as

[l] �
ε

[k′] �
µ

[k]

[n]

??
�β [m]

??
�= [m]

??

with α = εµ, and ε being a left (respectively, right) interval inclusion,
and the left square a pull-back.

Proof. The second factorisation is evident. For the first, consider all the el-
ements contained in the image [k]

α−→ [l] −→ [n], they will form an ordered
subset included as a left (respectively, right) interval. The map ζ is then forced
to be a surjection.

Lemma 4.29: Given a surjection [n] � [m] and a left (right) interval inclusion
α : [k]→ [l], there exists a completion to a square

[l] �
α

[k]

[n]

??
�β [m]

??



54 EDOUARD BALZIN

with horizontal arrows being left (right) interval inclusions. Same with α re-
placed by β : [m]→ [n]

Proof. Clear.

For a functor F : Y → X and a model Segal bifibration E → X, there are
two bifibrations over the relative comma category which one can obtain using
pullback operations: p∗XE → F 
 X and p∗YF

∗E → F 
 X. The bifibration
structure induces a Quillen adjunction

S : Sect(F 
 X, p∗XE) � Sect(F 
 X, p∗YF
∗E) : T.

Over an object (y, F (y)
f
� x), the functor S amounts to post-composing with

f! : E(x)→ E(F (y)), and the functor T – with its right adjoint f∗.

Proposition 4.30: The Quillen adjunction S a T induces an adjoint equiva-
lence

LS : HoSectSeg(F 
 X, p∗XE) � Ho SectSeg(F 
 X, p∗YF
∗E) : RT

where Ho SectSeg(F 
 X, p∗XE) denotes the full subcategory of sections Y : F 

X → p∗XE for which the map Y (o) → Rt∗Y (o′) induced from a Segal map
t : o→ o′ is an isomorphism (similarly for p∗YF

∗E).

Proof. The restriction to Segal sections is possible due to base change property
of the bifibration in question (Definition 4.20), as the adjoints are essentially
defined using the transition functors. We shall analyse both the unit and the
counit of the adjunction restricted to Segal sections.

Take a Segal section Y : F 
 X → p∗XE. Over o = (y, F (y)
f
� x), the map

Y (o)→ RTLSY (o) is isomorphic to Y (o)→ Rf∗Lf!Y (o). Denote by x0 and y0
the first vertices of x and y; the evident map o = (y, F (y)

f
� x)→ (y0, F (y0) =

x0) = o0 is then Segal. If we denote

x
f-- F (y)

x0

πx
? f0-- F (y0)

πy
?

then, using the Segal condition, we see that the map

Y (o)→ Rf∗Lf!Y (o)
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is isomorphic to

Rπ∗xY (o0)→ Rf∗Lf!Rπ∗xY (o0).

Finally, using the base change from Definition 4.20, we see that the latter map
is isomorphic to

Rπ∗xY (o0)→ Rf∗0Rπ∗yY (o0),

which is merely a differently written identity map.
The counit of the adjunction is treated similarly.

Proposition 4.31 (Resolutions for ∆-indexed categories): Let E → X be a
model Segal bifibration over a ∆-indexed category X, and F : Y → X be a
∆-indexed functor. If F is a resolution, then

F ∗ : SectSeg(X,E)→ SectSeg(Y, F
∗E)

factors through those Segal sections X : Y → F ∗E such that Rp∗YX is homo-
topically constant on the fibres of pX : F 
 X → X, and is a weak equivalence
onto the subcategory of such X.

Proof. Corollary 4.24 and Proposition 4.26 can be enhanced using Lemmas 4.28
and 4.29. For the projection pX : F 
 X → X, we get the following result: the
homotopical essential image of

p∗X : SectSeg(X,E)→ Sect(F 
 X, p∗XE)

consists of those sections Y for which

(1) the map Y (o)→ Rt∗Y (o′) induced from a Segal map t : o→ o′ of F 
X

is an isomorphism,
(2) the usual condition applies, that is, homotopical constancy on the fibres

of pX.

The necessary observation is that LpX,!Y is Segal, as one can verify by lifting
Segal maps from X to F 
 X using Lemma 4.29.

For the projection pY, we get, formally, that the homotopical essential image
of

p∗Y : SectSeg(Y, F
∗E)→ Sect(F 
 X, p∗YF

∗E)

consists of those sections Z for which

(1) the map Z(o)→ Rt∗Z(o′) induced from a Segal map t : o→ o′ of F 
X

is an isomorphism,
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(2) the usual condition applies, that is, homotopical constancy on the fibres
of pY.

Now we need to pass between two different bifibrations. Proposition 4.30
implies that no information is lost by applying T and S to the sections of
interest.

Let Y : F 
 X → p∗XE be a Segal section constant on the fibres of pX. We
then see that LS(Y ) is a Segal section which is automatically constant on the
fibres of pY: these fibres are y 
X, with only possible maps being induced from
degeneracies in X, and any derived section coming from X is constant along
degeneracies (Lemma 4.22). Thus LS(Y ) is contained in the essential image of
p∗Y.

For the converse, we see that in order for Z : F 
 X → p∗YF
∗E to belong

to the essential image of p∗X, we need exactly that RT (Z) is homotopically
constant on the fibres of pX. Both precedent observations and the fact that
RTRp∗YX is homotopically constant on the fibres of pX iff Rp∗YX is such imply
the theorem.

The first corollary is a result which is, perhaps surprisingly, not obvious.

Corollary 4.32: Let F : D → C be an equivalence of categories and E → C

a model opfibration. Then the induced pullback functor F∗ : DSect(C,E) →
DSect(D,E) is an equivalence of relative categories.

Proof. Denote by I the category whose objects are triples (d, c, F (d) ∼= c).
Both natural projections πC : I → C and πD : I → D are equivalences (hence
resolutions) and isofibrations; πD admits a canonical inverse equivalence iD such
that πC ◦ iD = F . The functor πC also admits a section iC that corresponds to
choosing an equivalence inverse to F . Denote by πC, πD, iC, iD the corresponding
simplicial replacement functors.

A map f in I is an isomorphism iff it is true for either πCf or πDf . This
together with Proposition 4.31 implies that the pullbacks π∗C : DSect(C,E) →
DSect(I, π∗CE) and π∗D : DSect(D, F ∗E) → DSect(I, π∗DF

∗E) are weak equiva-
lences of relative categories. The same is thus true for i∗C and i∗D.

Denote by [[n]] the category that has two copies of [n] inside of it, denoted
0 → ... → n and 0′ → ... → n′, and exactly one isomorphism i ∼= i′ for each
0 ≤ i ≤ n, with the obvious commutativity identities. Any object (c, d, Fd ∼= c)

of I yields a map [[0]] → C; similarly, it is true that given an object σ of the
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simplicial replacement I, we have an associated functor σ : [[n]]→ C whose first
row looks like Fdi and the second row like ci. We can use this notation to define
Ẽ(σ) = Sect([[n]], σ∗E>) and form the covariant Grothendieck construction to
get Ẽ → I. Evaluating sections at the top or the bottom row induces functors
π∗DF∗E

q← Ẽ
p→ π∗CE over I that are furthermore seen to be equivalences. We

can promote Ẽ → I to a model Segal bifibration, such that the equivalences q
and p preserve all parts of the (fibrewise) model structure. It makes sense to
speak of Segal sections of Ẽ→ I.

Observe now that we have the following diagram:

SectS (I, Ẽ)

DSect(I, π∗CE)

p∗

�
DSect(I, π∗DF

∗E)

q∗
-

DSect(C,E)

i∗C
? F∗ - DSect(D, F ∗E)

i∗D
?

This diagram commutes up to an isomorphism: a section X : I → Ẽ can be
evaluated on those σ : [[n]]→ C that look like

Fd0 - ... - Fdn

Fd0

=
?

- ... - Fdn

=
?

creating an isomorphism between the restriction of X(σ) to the top and the
bottom rows. Moreover p∗, q∗, i∗C, i

∗
D are weak equivalences; it thus follows that

F∗ is one as well.

Proof of Proposition 4.7. Given an arbitrary resolution F : D → C, we can
factor it as F = F̃G, where F̃ is an isofibration and a resolution, and G is
an equivalence. Applying Proposition 4.31 for F̃ and Corollary 4.32 for G, we
get that DSect(C,E) → DSectF∗IsoC(D, F ∗E) is a weak equivalence of relative
categories, with F ∗IsoC denoting the F -isomorphisms. Given any subset S of
maps of C, if we ever have a map

(c0
S→ ...

S→ ck → ck+1 → ...→ cn) −→ (ck → ck+1 → ...→ cn)
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in C, then the resolution property of F allows us to find a map in D that looks
like

(d0
F∗S→ ...

F∗S→ dk → dk+1 → ...→ dn) −→ (dk → dk+1 → ...→ dn)

and such that its F-image covers the C-map in question. This observation
allows us to see that any F ∗S-constant derived section X is the F∗-image of a
S-constant derived section.
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