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Last time Boris Shminke spoke of how to use ML and NN to work with
mathematical objects.

This talk focuses on another project of ours, that tries to use ideas from
what was recently pure mathematics to understand NN and ML.

Besides Boris, it is also joint with Sai Muttavarapu (M1 intern), Matan
Prasma (Berlin)
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Exchange between pure math and AI is picking up
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Of course, neural networks have been studied mathematically for quite a
while, from the analytical viewpoint (Cybenko’s Universal Approximation
Theorem), or with statistical tools.

Recently, there have been attempts to apply category theory, topology,
homological algebra as means of figuring out what is going on in the
realm of ML.

One hope is that we are dealing with “new physics” here: the
observations of string theory gave birth to domains like Mirror Symmetry.
Maybe the AI can do something similar?

Another hope is of course that studying NNs with different mathematics
will lead to new practical consequences.
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What is homology? I

Powerful idea, started at classifying spaces. Associate algebraic invariants:

Image source: Walker, Brenton (2016, DOI 10.1109/INFOCOM.2016.7524493)
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What is homology? II

Studying spaces algebraically became the discipline of algebraic topology.

However, in mathematics, most objects can be encoded as spaces, in a
certain sense.

Consequences, last 30 years:
I Algebraic Geometry =⇒ Derived Algebraic Geometry,
I Category Theory =⇒ Higher Category Theory,
I Mathematical Physics =⇒ Homological Mirror Symmetry,

Topological Quantum Field Theories.
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So, what about DNN?

Our project started when M.P. found a paper that tried to associate
homology to a deep neural network in a supervised learning context.

The paper (cited at the end) claimed that their homology groups
correlate with learning process, and detect stability of the model with
respect to adversarial attacks.

Trying to run the code, we instantly encountered the following issue:
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ML papers: claims vs reality
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Correlation metric

Let F be a DNN (feed-forward, fully-connected).

Let n1(F ), n2(F ) : Rm → R be two neurons of F . We can consider, for a
dataset {xi}I ∈ Rm (usually a training dataset), the following number:

d(n1(F ), n2(F )) :=
√

1− |c(n1(F ), n2(F ))|,

where

c(n1(F ), n2(F )) =

∑
(n1(F )(xi )− n1(F )(x))(n2(F )(xi )− n2(F )(x))√∑

(n1(F )(xi )− n1(F )(x))2
∑

(n2(F )(xi )− n2(F )(x))2

or 0 if the denominator of the above expression is 0.

Lemma 1. Let X (F ) = {nj(F )} the set of all neurons at all layers. Then
d as defined above makes X into a metric space.
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Homology of finite metric spaces

The pair (X (F ), d) is already an interesting object that changes with
gradient descent. It is still quite complicated to analyse.

The idea is then to treat the set of neurons with the metric d as a
dataset, and apply the technology of persistent homology.
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Image source: https: //eric-bunch. github.
io /blog /topological-data-analysis-and-persistent-homology
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Example: classification problem of D4 ⊂ [0, 1]4, R4 → R64 → R64 → R2,
ReLU and finally Softmax.

12 / 17



Example: classification problem of D4 ⊂ [0, 1]4,
R4 → R128 → R128 → R2, ReLU and finally Softmax.

13 / 17



Example: classification problem of D4 ⊂ [0, 1]4,
R4 → R128 → R128 → R128 → R2, ReLU and finally Softmax.
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Example: classification problem of D4 ⊂ [0, 1]4,
R4 → R512 → R512 → R2, ReLU and finally Softmax.

15 / 17



It appears that the homology is continuous in some sense, both for
deformations within the same architecture (training) and for changes of
architecture.

Perhaps the homological description of the process abstracts from the
architecture of the particular classifier network, leading to some new kind
of object?

How to formalise any of this?

If we have Fn → f , does this permit to define a sort of homology
H∗(Fn, ε)→ H∗(f )? What is the meaning of this homology?

What other constructions are sensible variations of the neuron metric
space? Maybe (persistent) homology is superfluous?

Why are there no β2 in examples above?
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The code used for the computations is a modified version of:

***
Ciprian Cornelanu DNN-topology,
https://github.com/cipriancorneanu/dnn-topology

C. A. Corneanu, M. Madadi, S. Escalera, and A. M. Martinez, What does
it mean to learn in deep networks? and, how does one detect adversarial
attacks? Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4757–4766, 2019
***

This code is incredibly inconvenient to run new numerical experiments
and further develop the ideas. Work with B.S. and S.M. – writing
something more adapted.
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