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What is geometry?

Is it topology? Yes. But is all topology geometry? Not quite.

Is it algebra? Yes. It is a lot of algebra, in fact (all “commutative algebra” and
even some noncommutative algebra in case of algebraic geometry).

Is it analysis? Often, yes. Even algebraically defined varieties can be studied using
analytic techniques.

Because of this, the course might have a different type of difficulty: many things
coming together at once.

Goal: introduce smooth manifolds, main objects that come together (smooth
maps, tensor fields), and prove a few results. By no means a complete course of
differential geometry (that takes 3× more hours!).

Still, I hope it could give you some taste for your masters.
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Section 1

Topology and topological manifolds
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Subsection 1

Topological spaces
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Topological spaces and maps Top

Definition 1.1. A Topological space consists of a set X together with a choice of
subsets Op(X) ⊂ 2X . A subset U ∈ Op(X) is called open. The opens satisfy:

1. ∅ ∈ Op(X) and X ∈ Op(X),

2. Given U1, ...Un in Op(X), their intersection U1 ∩ ... ∩ Un ∈ Op(X),

3. Given any family {Ui}i∈I of opens (the set I can be infinite), one has
∪i∈IUi ∈ Op(X).

One can have different choices of Op(X) for the same set X. We shall often omit
Op(X) from the notation.

Definition 1.2. Let (X,Op(X)) and (Y,Op(Y )) be two topological spaces. A
continuous map from X to Y is a function f : X → Y such that U ∈ Op(Y ) implies
f −1(U) := {x ∈ X|f (x) ∈ U} ∈ Op(X). The map f is furthermore a
homeomorphism if it admits a continuous inverse g : Y → X:
f ◦ g = idY , g ◦ f = idX . We denote f −1 := g.

A homeomorphism f : X
∼→ Y is in particular an open map: if U ∈ Op(X) then

f (U) = (f −1)−1(U) ∈ Op(Y ).

I will sometimes write X ∈ Top and f ∈ Top to mean that X is a topological space
and that f is continuous.
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Examples in Top

Example 1.3. Take X any set and put Op(X) := 2X . It works. This is called
discrete topology on X. Any singleton {x} is indeed open in this topology.
Let Y be a space. Any function X → Y is continuous for discrete topology on X
(what about Y → X?)

Example 1.4. Take X = R. Put Op(X) to be all U such that x ∈ U ⇒ ∃ε > 0

such that ]x − ε, x + ε[⊂ U. This is your classic analysis course topology.

1. Nothing to try for ∅, trivial for X,

2. Take ε = min(ε1, ...εn)

3. x ∈ ∪IUi means that x ∈ Uj for some j ∈ I, then use that
]x − ε, x + ε[⊂ Uj ⊂ ∪IUi .

For Rn, the definition is repeated: x ∈ U ⇒ ∃ε > 0 such that
B(x, ε) := {y | ‖y − x‖ < ε} ⊂ U. Can also use open cubes.

The notion of continuous function f : Rn → Rk coincides with that of
ε-δ-continuity.

8



Closed sets

Definition 1.5. Let X be a topological space. V ⊂ X is closed iff X \ V is open.
Closed sets satisfy:

1. ∅, X are closed.

2. If V1, ..., Vk are closed then so is V1 ∪ ... ∪ Vk .
3. The intersection ∩IVi of any family {Vi}i∈I is closed.

Example 1.6. Take X = R. Declare Op(X) by U ∈ Op(X)⇐⇒ X \ U is finite or
the whole X. To verify that this gives topology, it is enough to verify 1.-3. from
above. 1. is immediate, 2. is true since finite unions of finite subsets are finite, and
3. is true because | ∩I Vi | ≤ |Vi | <∞. This example is called Zariski topology on R.

Lemma 1.7. Let f : X → Y be a function. Then f is continuous ⇐⇒ f −1(V ) is
closed for any closed set V ⊂ Y .

Proof. For the ⇐ direction: U open in Y ⇐⇒ Y \ U closed ⇒
f −1(Y \ U) = X \ f −1(U) closed ⇐⇒ f −1(U) open in X. The other part is done
similarly. �
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Induced topology

Definition 1.8. Let X ∈ Top and S ⊂ X any subset. Define Op(S) to consist of
all the subsets V ⊂ S that can be presented as V = U ∩ S where U ∈ Op(X). One
verifies that this gives a topology on S, called the induced topology.

If f : X → Y continuous, then so is f |S : S → Y . If S ∈ Op(X), then
Op(S) = {U ∈ Op(X)|U ⊂ S}.

Example 1.9. The n-sphere Sn ⊂ Rn+1 is defined as

Sn := {x = (x0, ..., xn)|x2
0 + ...+ x2

n = ‖x‖2 = 1}.

Its filling is the unit n + 1-ball

Dn+1
:= {x = (x0, ..., xn)|x2

0 + ...+ x2
n = ‖x‖2 ≤ 1}

and the interior is

Dn+1 := {x = (x0, ..., xn)|x2
0 + ...+ x2

n = ‖x‖2 < 1} = B(0, 1).

One can consider other zero sets of continuous and smooth functions, or some
other subsets, like the torus in R3. The latter can also be defined without
presenting it as a 3-dimensional subset.
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Quotient topology

Consider a set X and let ∼ be an equivalence relation: x ∼ x , x ∼ y ⇐⇒ y ∼ x ,
and x ∼ y, y ∼ z ⇒ x ∼ z . Then we can form the quotient set (set of equivalence
classes)

X/∼= {[x ] | [x ] = {y |y ∼ x}}

so that [x ] = [y ] iff x ∼ y . There is a function p : X → X/∼, x 7→ [x ].

The function p satisfies the following property: let f : X → Y be any function such
that x ∼ x ′ ⇒ f (x) = f (x ′). Then there exists unique f̄ : X/∼→ Y such that
f = f̄ ◦ p:

X
f- Y

X/∼

p
? ∃!f̄

-

.

Indeed, take f̄ ([x ]) = f (x), the result does not depend on the choice of
representative since [x ] = [y ] then x ∼ y and f (x) = f (y). Any other map
g : X/∼→ Y such that g ◦ p = f will forcefully satisfy

g([x ]) = g(p(x)) = f (x) = f̄ ([x ]).
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Let now X ∈ Top.

Definition 1.10. The quotient topology on X/∼ is defined as follows:
U ∈ Op(X/∼) iff p−1(U) ∈ Op(X).

Why? First, because it works:

Lemma 1.11. Let X ∈ Top and f : X → S be any map of sets. Define
Op(S) := {U ⊂ S|f −1(U) ∈ Op(X)}. Then (S,Op(S)) ∈ Top and f is
automatically continuous.

Proof.

1. f −1(S) = X, f −1(∅) = ∅.
2. f −1(U1 ∩ U2) = {x |f (x) ∈ U1 and f (x) ∈ U2} = f −1(U1) ∩ f −1(U2) ∈ Op(X).

3. f −1(∪IUi ) = {x |f (x) ∈ Ui for some i ∈ I} = ∪I f −1(Ui ) ∈ Op(X). �
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Second, because it solves the same universal problem as before. If f : X → Y is
any continuous map satisfying x ∼ y ⇒ f (x) = f (y), then recall the diagram:

X
f- Y

X/∼

p
? ∃!f̄

-

.

Take U ∈ Op(Y ). Then f̄ −1(U) is in fact open, as

p−1(f̄ −1(U)) = {x | p(x) ∈ f̄ −1(U)} = {x | f (x) = f̄ (p(x)) ∈ U} = f −1(U).

We summarise it as follows:

Lemma 1.12. Let X ∈ Top and ∼ an equivalence relation on X. Then the
quotient set map X → X/∼ satisfies the following property: for any continuous
f : X → Y such that x ∼ y ⇒ f (x) = f (y), there exists unique continuous map
f̄ : X/∼→ Y such that f̄ ◦ p = f .
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The torus T

Example 1.13. Consider the following equivalence relation on R2 :

(x, y) ∼ (x ′, y ′)⇐⇒ (x − x ′, y − y ′) ∈ Z2.

Take the quotient R2/∼ that we will also denote R2/Z2. Another way to present
the same set (up to iso): take [0, 1]2 and put ∼ on it by declaring

(x, 0) ∼ (x, 1), (0, y) ∼ (1, y) and (x, y) ∼ (x, y).

Denote T := [0, 1]2/∼. There are maps i : [0, 1]2 ↪→ R2 (inclusion) and
r : R2 → [0, 1]2, r(x, y) = ({x}, {y}) (fractional part). These functions respect the
equivalences relations inducing bijections

i : T ∼= R2/Z2 : r

The set T or equivalently R2/Z2 is called the (2-)torus.

Exercise 1.14. We can use quotient topology and define topology on R2/Z2

taking the standard topology on R2. We can do the same for T using the induced
topology on [0, 1]2. Prove that for this choice of topologies, the maps i and r are
continuous (hint: Lemma 1.12).

Checks like this one are abundant and many of them will be skipped.
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Real projective spaces RPn

Important class of spaces that does not naturally come as a subset of RN .

Example 1.15. The real projective space RPn is defined as the set of all
one-dimensional subspaces of Rn+1:

RPn := {L ⊂ Rn+1|L is linear and dimL = 1}.

Alternatively we can understand L ∈ RPn as lines passing through the origin.
There are different ways to parametrise these lines.

Take (x0, ...xn) ∈ L \ 0 ⊂ Rn (0 denotes the zero subspace). Then every other point
of L can be obtained as (λx0, ..., λxn) where we vary λ ∈ R. This motivates to
consider Rn+1 \ 0 and put ∼ by declaring (x0, ..., xn) ∼ (λx0, ..., λxn) for all λ ∈ R∗.

We can then consider the map q : Rn+1 \ 0→ RPn that sends (x0, ..., xn) to the line
L = {(λx0, ..., λxn)|λ ∈ R). This induces q̄ : (Rn+1 \ 0)/∼→ RPn. It admits a
bijective inverse g : RPn → (Rn+1 \ 0)/∼ that sends L to [(y0, ..., yn)] where
(y0, ..., yn) is a nonzero vector of L.

Use this bijection to put topology on RPn: U ⊂ RPn is open iff q̄−1(U) = g(U) is
open in Rn+1/∼.
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Was that unclear? Go to TD! You will also learn why RPn ∼= Sn/∼, where the
equivalence relation identifies antipodal points.

p

−p

RPn ∼= Sn/∼, p ∼ −p.
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Subsection 2

Topological manifolds
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Topological manifolds

Definition 1.16. A topological space X is Hausdorff if for x, y ∈ X, x 6= y there
exist two opens Ux 3 x , Uy 3 y such that Ux ∩ Uy = ∅.

Example 1.17. The line R with Zariski topology is not Hausdorff.

Definition 1.18. A topological n-manifold is a Hausdorff topological space M
such that for any point x ∈ M there exists U ∈ Op(M) containing x and a
homeomorphism between U and an open subset of Rn. The number n is called the
dimension of M.

The definition relies on the fact that opens of Rn are not homeomorphic to opens
of Rm for n 6= m. This is a not too obvious result that we will avoid (smooth
manifolds have it easy).

Example 1.19. Any Rn with standard topology is a topological n-manifold. The
unit open disk Dn ⊂ Rn is a topological n-manifold. Any open U ⊂ Rn is also a
topological n-manifold. Example: GL(n,R) := {M ∈ Matn(R)| detM 6= 0} ⊂ Rn2 of
dimension n2.
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Sn is a topological manifold

Example 1.20. The spheres Sn. Define

U±i = {(x0, ..., xn) ∈ Sn| ± xi > 0}

(2n + 2 sets). One has
(
∪ni=0U

+
i

)
∪
(
∪ni=0U

−
i

)
= Sn. Each U±i is open as it is equal

to Sn ∩ H±i where H±i = {(x0, ..., xn) ∈ Rn+1 | ± xi > 0}.
We then look at the map

ϕ±i : U±i → Dn ⊂ Rn, ϕ±i (x0, ..., xn) = (x0, ..., x̂i , ..., xn),

I it goes to the unit disk Dn as x2
0 + ...+ x2

n = 1 in U±i implies
x2

0 + ...+ x̂2
i + ...+ x2

n < 1

I it is continuous being a restriction of the i-th projection Rn+1 → Rn (linear).
I it is a homeomorphism, with inverse given by

η±i : Dn → U±i , η
±
i (y1, ..., yn) = (y1, ..., yi−1,±

√√√√1−
n∑
j=1

y2
j , yi , ..., yn);

η±i is continuous when viewed as map Dn → H±i , its image is exactly U±i ,
composing η±i with ϕ±i either way gives identities.
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Image courtesy of Wikipedia

There are of course other ways to do charts (try stereographic projection for S1

and S2).
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RPn is a topological manifold

Example 1.21. Recall q : Rn+1 \ 0� RPn, v 7→ Span(v). This presents RPn as a
quotient of Rn+1 \ 0 by the equivalence relation v ∼ λv for λ 6= 0. Take a line
L ∈ RPn, L = Span(e) for some e 6= 0. Denote H := L⊥. As we studied,
Rn+1 = Span(e)⊕H. Denote C := e +H.

Let L′ = Span(v) be any other line. We would like to “project” onto C, which
corresponds to taking C ∩ L′. In terms of Rn+1, this corresponds to a map

pC : Rn+1 \H → C, v = ae + h 7→ e + h/a;

indeed, for this to make sense, one needs a 6= 0⇔ L′ /∈ H. The map pC is
continuous with image C. It also respects the equivalence relation: if v = ae + h

then
λv = λae + λh 7→ e + λh/aλ = e + h/a.

The inclusion iC : C ↪→ Rn+1 \H works as e + h 7→ e + h so pC iC = idC . Note that
iC(pC(v)) ∼ v (take λ = 1/a).

Upshot: have continuous pC : Rn+1 \H → C, and have iC : C → Rn+1 \H that
respect ∼. Denote PC := p̄C : RPn \ q(H)→ C and IC := q ◦ iC : C → RPn \ q(H).
Both are continuous and are mutually inverse. We conclude by choosing a basis in
H that gives a homeomorphism Rn ∼= C.
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Subsection 3

Leftover statements
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Here I will add some statements that were mentioned in course and can be of use
for later.

Lemma 1.22. Let f : X → Y be a continuous map. Denote S = im f ⊂ Y and
equip it with induced topology. Then f viewed as a map X → S is still continuous.

Proof. By definition of the image, for each V ∈ Op Y one has
f −1(V ) = f −1(V ∩S). We can read this equality from right to left and conclude. �
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Section 2

Smooth manifolds
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Differential calculus

Aubin book [3], Chapter 0 is good review.
Choose U open in Rn. A function f : U → Rm is differentiable at p ∈ U if there
exists a (forcefully unique) linear map df (p) ∈ L(Rn,Rm) such that for all h ∈ Rn
sufficiently close to 0,

f (p + h) = f (p) + df (p)(h) + ‖h‖ ε(p, h)

with ε(p, h)→ 0 as h → 0. A differentiable f is automatically continuous at p.
In standard coordinates p = (x1, ..., xn) the differential df (p) is computed via
partial derivatives (Jacobian matrix):

J =

(
∂fi

∂xj
(p)

)i=1,m

j=1,n

∈ Matm,n(R) so that df (h)i =
∑
j

hj
∂fi

∂xj
(p).

In coordinate-independent terms, instead of partial derivatives one speaks of
directional derivative: for v ∈ Rn, one defines

Dv f (p) := lim
t→0

f (p + tv)− f (p)

t
.

Then Dv f (p) ∈ Rm and can be computed in local coordinates as (
∑
vj
∂fi
∂xj

(p))i .
Note that v belongs to Rn and not to U. This difference will become quite
pronounced in our course.
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When the assignment df : p 7→ df (p) gives a continuous map Rn → L(Rn,Rm) we
say that f is of class C1. Passing between differential and directional derivatives is
not a problem in this class of functions (otherwise directional derivability does not
imply full derivability).

The chain rule is summarised very neatly: let U ⊂ Rn and V ⊂ Rm both open, and
f : U → V , g : V → W ⊂ Rk of class C1. then d(g ◦ f ) = dg ◦ df . This way it is
easy to see that in no way U and V can be C1-isomorphic, or diffeomorphic, if
m 6= n: having such an isomorphism f : U ∼= V : f −1 would imply that
df : Rn ∼= Rm : d(f −1) is a vector space isomorphism.

One can further define Ck (f is of class Ck if df is of class Ck−1 with C0 = C) and
C∞ (f is of class Ck for all k). The notation Ck(U, V ) for k ∈ [0,∞] means the set
of all functions U → V of class Ck , and Ck(U) := Ck(U,R). If f ∈ Ck(U, V ) and
g ∈ Ck(V,W ) then g ◦ f ∈ Ck(U,W ).

The set Ck(U) is, in particular, a commutative R-algebra. The vector space
structure is (λf )(p) := λf (p), (f + g)(p) := f (p) + g(p) and the ring structure is
f · g(p) := f (p)g(p) (product is differentiable thanks to Leibniz rule).

27



Subsection 1

Attempting to define smooth manifolds
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Definition 2.1. Let M be a topological n-manifold and p ∈ M. A coordinate
chart is a pair (U,ϕ) of an open U ⊂ M and a homeomorphism ϕ : U

∼→ Ω onto an
open Ω ⊂ Rn. The (coordinate) chart is centered at p if p ∈ U and ϕ(p) = 0.

This definition can be given with M a topological space, just that nothing will
guarantee the existence of charts.

Let M be a topological manifold. We certainly have C(M), the set of continuous
functions M → R. We can also consider C(M,N), continuous maps to other
topological manifolds N (or even spaces).

Taking U ⊂ M and choosing ϕ : U
∼→ Ω with Ω open in Rn might make us think

that we can define Ck(U) by saying f ∈ Ck(U) iff f ◦ϕ−1 ∈ Ck(Ω). The problem is
that we have no fail-safe in Definition 1.18 that makes it independent of ϕ.

Put another way, if p ∈ M and (U,ϕ), (V, ψ) are two coordinate charts containing
p, we can ask what happens on U ∩ V . Denote Φ = ϕ(U ∩ V ) and Ψ = ψ(U ∩ V ).
Then the map ψ ◦ ϕ−1|Φ : Φ→ Ψ is a continuous map between two subsets of Rn,
a homeomorphism, but not necessarily C≥1.

There are examples of topological manifolds which cannot be “promoted” to
smooth manifolds (E8 manifold).
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ϕ

ϕ−1 ψ−1

ψ

M

U
V

Rn

ψ ◦ ϕ−1

Rn

Ω Θ
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Atlas

Let M be a Hausdorff topological space. Assume we have two open charts (U,ϕ),
(V, ψ) with ϕ : U

∼→ Ω ⊂ Rn, ψ : V
∼→ Θ ⊂ Rn. Denote as before Φ = ϕ(U ∩ V ),

Ψ = ψ(U ∩ V ).

Definition 2.2. In the situation above, two charts are called Ck -compatible if the
map ψ ◦ ϕ−1|Φ : Φ→ Ψ is a Ck -diffeomorphism of open sets in Rn.

Note that the inverse of ψ ◦ ϕ−1|Φ, given by ϕ ◦ ψ−1|Ψ is also then a
Ck -diffeomorphism.

Definition 2.3. A Ck -atlas (of dimension n) on a Hausdorff topological space M
consists of a collection of open charts {(Ui , ϕi}|i∈I with ϕi : Ui

∼→ Ωi

homeomorphisms onto opens Ωi ⊂ Rn such that

1. (cover) ∪IUi = M

2. (compatible) any two charts (Ui , ϕi ), (Uj , ϕj ) are Ck -compatible.

Lemma 2.4. Let M be a Hausdorff topological space. Then M is a topological
manifold ⇔ there exists a C0-atlas on M (of some dimension). �
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Still not quite a smooth manifold

One would be motivated to say that we now define a smooth manifold as a
Hausdorff topological space/manifold admitting a C∞-atlas. Atlases are indeed
useful, however such a definition is highly non-invariant, like a vector space with a
fixed basis.

Given a Hausdorff M and some smooth atlas A = {(Ui , ϕi )} we can declare the set
of smooth functions C∞(M) to consist of those (continuous) f : M → R such that

Ωi

ϕ−1
i−→ Ui

f |Ui−→ R

is in C∞(Ωi ). This turns out to be a good definition, but different smooth atlases
give the same set of smooth functions C∞(M).

Example 2.5. M = Rn, A1 = {(Rn, idRn )}, A2 = {(B(x, 1), idB(x,1))}x∈Qn .

One way to remedy this is to define some notion of equivalence relations on
atlases. Another way is to properly spell out the idea that C∞(M) is glued from
locally defined smooth functions.

We will do the latter.
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Subsection 2

Controlling local properties of functions
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Sheaves of functions

The following exposition exists in [2], a more advanced version can also be found
in [5]. Notation: X a space, T a set, F(X,T ) set of all functions. If T has
topology then C(X,T ) = Map(X,T ) denotes continuous maps as usual.

(If it helps for now, think of X,T as subsets in Rn)

Exercise 2.6. For what topology on a set T one has C(X,T ) = F(X,T )?

Definition 2.7. Let X ∈ Top.

1. A presheaf of functions valued in T is a collection of subsets P(U) ⊂ F(U, T )

for each U ∈ Op(X) that satisfies the following property: for V ⊂ U, if
f ∈ P(U) then f |V ∈ P(V ). We will refer to it as P = {P(U)}U∈Op(X).

2. A presheaf of functions P is a sheaf if for any U ∈ Op(X) and any open cover
{Ui}I of U, U = ∪IUi , one has

f ∈ F(U, T ), f |Ui ∈ P(Ui ) for all i ∈ I =⇒ f ∈ P(U).

There are more general definitions of sheaves that we will try to avoid.
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Example 2.8. 1. Take X,T any and set P(U) = F(U, T ) trivially produces a
sheaf.

2. Take X,T any and set P(U) to be constant functions U → T . It is a presheaf,
not generally a sheaf (why?).

3. Take X any, T a topological space, and define P by setting P(U) = C(U, T ).
It is a presheaf as restrictions of continuous maps are continuous. It is also a
sheaf.
To check, let f : U → T and {Ui}I cover of U such that f |Ui ∈ C(Ui , T ). Let
V ∈ Op(T ). Take f −1(V ). We have that

f −1(V ) ∩ Ui = f |−1
Ui

(V ) ∈ Op(Ui ) ⊂ Op(U), f −1(V ) = ∪I(f −1(V ) ∩ Ui )

and thus f −1(V ) ∈ Op(U) and hence f ∈ P(U).

4. In particular, taking T a set and putting on it discrete topology produces
P(U) consisting of locally constant functions U → T .

5. Take X any, T = R and set

P(U) = {f : U → R| ∃Mf > 0 : ∀x ∈ U ‖f (x)‖ < Mf }.

it is a presheaf, not a sheaf. Simply take f : R→ R, f (x) = x : locally
bounded, globally unbounded.
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Example 2.9. Let X = Ω ∈ Op(Rn), T = R with standard topology. A function
f : Ω→ R is differentiable at x iff the same is true for the function f |U , where
x ∈ U ∈ Op(Ω).

Because of this, defining CkΩ by setting CkΩ(U) to be all functions U → R of class
Ck gives a sheaf on Ω.

A restriction of a Ck function f : U → R to V ∈ Op(U) gives a Ck -function on V .
Any function f : U → R that has the property of being Ck when restricted to all
sets of some open cover {Ui} of U, is Ck on the whole of U.

Remark 2.10. The set F(U,R) is a commutative R-algebra: for f , g ∈ F(U,R)

and λ ∈ R, one has

(f + g)(x) = f (x) + g(x), (λf )(x) = λf (x), (f · g)(x) = f (x) · g(x).

The restrictions along V ⊂ U, F(U,R)→ F(V,R) are R-algebra homomorphisms
since we define algebra structures point-by-point.

Definition 2.11. Let X be a topological space and A a sheaf of functions
A(U) ⊂ F(U,R). Then we call A a sheaf of R-algebras if each A(U) is a
subalgebra of F(U,R).
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R-spaces

Example 2.12. For any space X, the sheaves FX and CX given by
FX(U) := F(U,R) and CX(U) := C(U,R) are sheaves of R-algebras.

Example 2.13. For Ω ⊂ Rn, the sheaves CkX of Example 2.9 are sheaves of
R-algebras on Ω.

Definition 2.14. Given a map ϕ : X → Y in Top, U ∈ Op(Y ) and any f : U → R,
the pull-back of f along ϕ, denoted ϕ∗f : ϕ−1(U)→ R, is the function defined as
(ϕ∗f )(x) := f (ϕ(x)).

Definition 2.15. A R-space is a pair (X,A) of X ∈ Top and A a sheaf of
R-algebras on X. A morphism (map) of R-spaces ϕ : (X,A)→ (Y,B) is a
continuous map ϕ : X → Y such that for each U ∈ Op(Y ) and f ∈ B(U), the
pull-back ϕ∗f belongs to A(ϕ−1(U)).

R-spaces are also called concrete ringed spaces over R [2].
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Remark 2.16. Note that the assignment ϕ∗ : B(U)→ A(ϕ−1(U)), f 7→ ϕ∗f is
automatically an R-algebra homomorphism. Indeed,
ϕ∗(f · g)(x) = (f · g)(ϕ(x)) = f (ϕ(x)) · g(ϕ(x)) = (ϕ∗f · ϕ∗g)(x) and so on.

Example 2.17. 1. For a space X, take the sheaf FX of all functions to R,
FX(U) = F(U,R). Then any continuous map F : X → Y induces a morphism
of R-spaces (X,FX)→ (Y,FY ) for trivial reasons.

2. For a space X, take the sheaf CX of continuous functions, CX(U) = C(U,R).
Then any continuous map F : X → Y induces a morphism of R-spaces
(X,CX)→ (Y, CY ) since pull-back of any g ∈ C(U,R) is g ◦ F ∈ C(f −1(U),R)

automatically.

3. The pairs (Ω, CkΩ) with Ω ⊂ Rn and CkΩ(U) = Ck(U,R) are R-spaces. The
identity map idΩ induces morphisms of R-spaces (Ω, Ck−1

Ω )→ (Ω, CkΩ).

4. One can also equip Ω with a sheaf A where A(U) are real analytic functions
on U. It will be an R-space. The identity idΩ gives a map (Ω, C∞Ω )→ (Ω,A).
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Let ϕ : X
∼→ Y be a homeomorphism. Then if we consider the R-space structure

from Example 2.17, the induced R-space map (X,FX)→ (Y,FY ) has the property
that for any V ∈ Op(Y ), the map

ϕ∗ : F(V,R) −→ F(ϕ−1(V ),R), f 7→ ϕ∗(f )

is an isomorphism of R-algebras, with inverse given by (ϕ−1)∗. This simply states
that functions between isomorphic sets V ∼= ϕ−1(V ) are the same.

Definition 2.18. An R-space map ϕ : (X,A)→ (Y,B) is an isomorphism if
ϕ : X → Y is a homeomorphism and that for any V ∈ Op(Y ) and f ∈ F(V,R), one
has

f ∈ B(V ) ⇐⇒ ϕ∗(f ) ∈ A(ϕ−1(V )).

Note that taking f = g ◦ ϕ−1 for g : U → R defined on U ∈ OpX yields:

g ◦ ϕ−1 ∈ B(ϕ(U)) ⇐⇒ g ∈ A(U).

In other words, the sheaves of functions are in bijective correspondence over the
corresponding sets.

This definition of isomorphism agrees with notion of composition of R-space maps
(see problem in TD).
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Subsection 3

Smooth manifolds, defined
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If S is a sheaf on X, then we can restrict it to any open subset U ⊂ X: define S|U
by S|U(V ) = S(V ) for V ∈ Op(U). It will be again a sheaf.

Example 2.19. If (X,A) is an R-space, then for each U ∈ Op(X) the pair
(U,A|U) is again an R-space. The inclusion U ↪→ X becomes a map
(U,A|U)→ (X,A).

Definition 2.20. A Ck -manifold (k ∈ [0,∞]) is an R-space (M,A) such that

1. The space M is Hausdorff.

2. For each x ∈ M there exists U ∈ Op(M), x ∈ U, and an R-space isomorphism
(U,A|U)

∼→ (Ω, CkΩ) in the sense of Definition 2.18. Here, Ω ∈ Op(Rn).

The sheaf A is then denoted CkM , and called the sheaf of Ck -functions on M. In
particular, a C∞-manifold is called smooth. For any U ∈ OpM we shall also write
A|U := CkU ; the pair (U,CkU) is a Ck -manifold.

Remark 2.21. Note that we can replace 2. in the definition above by the
condition: M admits an open covering {Ui}i∈I such that each (Ui ,A|Ui ) is
isomorphic to some (Ω, CkΩ). Another tedious verification permits to give
equivalent definitions with Ω = Rn or Dn.

Taking k = 0 reproduces the definition of topological manifold (Example 2.17.2.)
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Sn is a smooth manifold

Example 2.22. To put a smooth structure on Sn ⊂ Rn+1, we would like to use
the map u : Rn+1 \ 0→ Sn, v 7→ v/‖v‖.
1. The map u is continuous (use sequential verification if needed). Moreover
U ⊂ Sn is open iff so is u−1(U).

2. Define C∞Sn (U) := {f : U → R | u∗(f ) : u−1(U)→ R is C∞}. This set is a
R-algebra: since u∗(λf + µg) = λu∗(f ) + µu∗(g), u∗(f g) = u∗(f )u∗(g), we see
that pullbacks of sums and products are smooth.

3. If V ⊂ U then u−1(V ) ⊂ u−1(U). Thus u∗(f ) : u−1(U)→ R being C∞ implies
that u∗(f ) : u−1(V )→ R is C∞. Hence C∞Sn is a presheaf.

4. If U = ∪IUi in Sn then u−1(U) = ∪Iu−1(Ui ) in Rn+1 \ 0. Thus for f : U → R, if
u∗(f ) is C∞ on each u−1(Ui ) then u∗(f ) is C∞ on u−1(U) as C∞ functions
form a sheaf on Rn+1 \ 0.

5. We conclude that C∞Sn is a sheaf and (Sn, C∞Sn ) is an R-space.
6. Let x ∈ Sn. Assume x ∈ U+

i where U+
i = {(x0, ..., xn) ∈ Sn | xi > 0} is from

Example 1.20. We also recall

ϕi : U+
i

∼→ Dn, ϕ+
i (x0, ..., xn) = (x0, ..., x̂i , ..., xn).

We want to prove that ϕi : (U+
i , C

∞
U+
i

)→ (Dn, C∞Dn ) is an R-space isomorphism.
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7. Denote U+
i := u−1(U+

i ) = {(x0, ..., xn) ∈ Rn+1 \ 0|xi > 0}. Also denote

Φi := ϕi ◦ u : U+
i → Dn, Φ(x0, ..., xn) =

1

‖x‖
(x0, ..., x̂i , ..., xn).

8. The map Φi is smooth. If V ∈ Op(Dn) and f : V → R is C∞, then so is Φ∗i (f ).

9. Let V ∈ Op(Dn). Take f : V → R of class C∞, check if ϕ∗i (f ) ∈ C∞
U+
i

(ϕ−1
i (V )).

For this, note that u∗(ϕ∗i (f )) = f ◦ ϕi ◦ u = f ◦Φi . This is C∞ by 8.

10. Let V ∈ Op(Rn). Take f : V → R and assume that ϕ∗i (f ) ∈ C∞
U+
i

(ϕ−1
i (V )).

This means that, by calculus above, the function f ◦Φi : Φ−1
i (V )→ R is C∞.

Note that

η+
i (y1, ..., yn) = (y1, ..., yi−1,

√√√√1−
n∑
j=1

y2
j , yi , ..., yn)

can be viewed as a smooth function from Dn to U+
i . We have Φi ◦ η+

i = idDn
and so f = f ◦ (Φi ◦ ηi+) = (f ◦Φi ) ◦ ηi+ is smooth as well.

11. This proves that ϕi : (U+
i , C

∞
U+
i

)→ (Dn, C∞Dn ) is an R-space isomorphism.

12. The same arguments can be done for U−i instead of U+
i . We conclude since

Sn =
(
∪ni=0U

+
i

)
∪
(
∪ni=0U

−
i

)
.
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RPn is a smooth manifold

Example 2.23. Recall q : Rn+1 \ 0→ RPn, v 7→ L = Span(v). We constructed an
open chart using C = e +H where H = {e}⊥. We now define CkRPn by setting

CkRPn (U) := {f : U → R | q∗(f ) = f ◦ q : q−1(U)→ R is Ck}.

This set is a R-algebra: since q∗(λf + µg) = λq∗(f ) + µq∗(g),
q∗(f g) = q∗(f )q∗(g), we see that pullbacks of sums and products are smooth.

1. If V ⊂ U then q−1(V ) ⊂ q−1(U). Thus q∗(f ) : q−1(U)→ R being Ck implies
that q∗(f ) : q−1(V )→ R is Ck . Hence CkRPn is a presheaf.

2. If U = ∪IUi in RPn then q−1(U) = ∪Iq−1(Ui ) in Rn+1 \ 0. Thus for f : U → R,
if q∗(f ) is Ck on each q−1(Ui ) then q∗(f ) is Ck on q−1(U) as Ck functions
form a sheaf on Rn+1 \ 0.

3. We conclude that CkRPn is a sheaf and (RPn, CkRPn ) is an R-space.
4. Recall map pC : Rn+1 \H → C, ae + h 7→ e + h/a used to construct

homeomorphism p̄C : RPn \ q(H)
∼→ C Choose e = e0 of the standard basis

and identify e0 +H0 with H0 = {(x1, ..., xn)} using e + h 7→ h. Then the map
pC gives rise to map

p0 : U0 := Rn+1 \H0 −→ Rn, (x0, ..., xn) 7→ (x1/x0, ..., xn/x0)

which in turn gives a homeomorphism p̄0 : Ū0
∼→ Rn.
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5. Moreover, the map p0 is smooth. Thus is V ∈ Op(Rn) and f : V → R is Ck ,
then so is p∗0(f ).

6. Let V ∈ Op(Rn). Take f : V → R of class Ck , check if p̄∗0(f ) ∈ Ck
Ū0

(p̄−1
0 (V )).

For this, note that q∗(p̄∗0(f )) = f ◦ p̄0 ◦ q = f ◦ p0. This is Ck by 5.

7. Let V ∈ Op(Rn). Take f : V → R and assume that p̄∗0(f ) ∈ Ck
Ū0

(p̄−1
0 (V )). This

means that, by calculus above, the function f ◦ p0 : p−1
0 (V )→ R is Ck . In

coordinates, (f ◦ p0)(x0, ..., x1) = f (x1/x0, ..., xn/x0). We see that
f = f ◦ p0 ◦ i0 where i0(x1, .., xn) = (1, x1, ...xn) a smooth map with domain Rn.
Associativity of composition gives that f is smooth.

8. We conclude that p̄0 : (Ū0, C
k
U0

)
∼→ (Rn, CkRn ) is an R-space

isomorphism.

9. We can similarly define Ui = {(x0, ..., xn)|xi 6= 0}, pi : Ui → Rn and prove that
p̄i : (Ūi , C

k
Ui

)
∼→ (Rn, CkRn ) is an R-space isomorphism. We finally observe that

RPn = Ū0 ∪ ... ∪ Ūn.
10. Of course, this is valid for any k, so in particular RPn is a smooth manifold.

The Hausdorff condition is easy to verify using charts.

Exercise 2.24. Denote by q the defining projection R2 → T. For U ∈ Op(T),
define C∞T (U) := {f : U → R | q∗(f ) : q−1(U)→ R is C∞}. Prove that (T, C∞T ) is a
C∞-manifold.
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Subsection 4

Revisiting atlases
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Definition 2.25. For a Ck -manifold (M,Ck), the R-space isomorphism
ϕ : (U,C∞U )

∼→ (Ω, CkΩ) for U ∈ Op(M) is called an open chart. It is centred at
p ∈ U if ϕ(p) = 0. The number n in Ω ⊂ Rn is called the dimension of M.

Remark 2.26. A topological manifold M that can be made into a C1-manifold
can also be made into a C∞-manifold. So we will often put k =∞.

A Ck -manifold (M,CkM) has no compatibility issues. Let ϕ : (U,CkU)
∼→ (Ω, CkΩ),

ψ : (V, CkV )
∼→ (Θ, CkΘ) be two coordinate charts. Let W ⊂ U ∩ V open. Then

CkU(W ) = CkM(W ) = CkV (W ) by definition. Spelling out in detail the definition, it
means that

{f : W → R | f ◦ ϕ−1 ∈ CkΩ(ϕ(W ))} = {f : W → R | f ◦ ψ−1 ∈ CkΘ(ψ(W ))}

In particular, take a function pi : ψ(W )→ R, pi (x1, ..., xn) = xi . Evidently
pi ∈ CkΘ(ψ(W )). Consider then f = pi ◦ ψ : W → R. The RHS of the above
equality implies that f ∈ CkM(W ), and so using the LHS we see that
pi ◦ ψ ◦ ϕ−1 : ϕ(W )→ R is Ck .

We conclude that ψ ◦ ϕ−1 : ϕ(W )→ ψ(W ) ⊂ Rn is of class Ck . Can interchange ϕ
and ψ as their role is symmetric. Atlas returns and is subsumed.
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Formalising passage from atlas to manifold

Lemma 2.27. Let U be a Hausdorff topological space and ϕ : U
∼→ Ω a

homeomorphism onto Ω ⊂ Rn. Define CkU to be the presheaf

CkU(V ) := {f : V → R | f ◦ ϕ−1 : ϕ(V )→ R is Ck}.

Then (U,CkU) is a Ck -manifold and ϕ : (U,CkU)→ (Ω, CkΩ) is an R-space
isomorphism. The statement works for any k.

Proof. Using the identities (λf + µg) ◦ ϕ−1 = λ(f ◦ ϕ−1) + µ(g ◦ ϕ−1),
(f · g) ◦ ϕ−1 = (f ◦ ϕ−1) · (g ◦ ϕ−1) we see that CkU(V ) is stable by linear sums and
products.

If V1 ⊂ V2 then ϕ(V1) ⊂ ϕ(V2) so if f : V2 → R and f ◦ ϕ−1 is Ck on ϕ(V2) then the
same is true on ϕ(V1).

Let V = ∪iVi . Then, ϕ(V ) = ∪iϕ(Vi ). If f : V → R is such that
f ◦ ϕ−1 : ϕ(Vi )→ R is Ck for each i , then the same is true for f ◦ ϕ−1 : ϕ(V )→ R
since CkΩ is a sheaf. Thus f ∈ CkU(V ) as required.

Finally note that for W ∈ OpΩ and f : W → R, f ∈ CkΩ(W ) implies that
ϕ∗f ∈ CkU(ϕ−1(W )) and vice versa, since (ϕ∗f ) ◦ ϕ−1 = f . �
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Let M be a Hausdorff topological space and A = {(Ui , ϕi : Ui
∼→ Ωi )}i∈I be a

Ck -atlas as per Definition 2.3.

Let us define the presheaf CkM by declaring CkM(V ) to consist of all functions
f : V → R satisfying: for each point x ∈ V there is a chart (Ui , ϕi ) containing x
such that f ◦ ϕ−1

i : ϕi (V ∩ Ui )→ R is Ck .

Proposition 2.28. Then the pair (M,CkM) is a Ck -manifold.

Proof. Tedious. Some elements:

1. Let V be an open subset of some Ui . Then we say that f : V → R is
ϕi -smooth if f ◦ ϕ−1

i : ϕi (V )→ R is Ck . Thanks to the previous lemma
ϕi -smooth functions form a sheaf of algebras on Ui .

2. The definition of CkM can be rephrased as follows. For a W ∈ OpM and
f : W → R, we say that f ∈ CkM(W ) iff there exists a subcollection of atlas
charts {Uj}j∈J such that W ⊂ ∪JUJ and f |W∩Uj is ϕj -smooth for each j ∈ J.

3. Let W ∈ OpM, and {Uj}j∈J , {Uα}α∈A be two collections of charts so that
∪JUj ⊃ W ⊂ ∪AUα. Let f : W → R be such that f |W∩Uj is ϕj -smooth for each
j ∈ J. Then for each j, α, f |W∩Uj∩Uα is ϕj -smooth. Due to the compatibility of
the atlas it is the same as being ϕα-smooth.

Since ϕα-smooth functions form a sheaf on Uα, we conclude that f |W∩Uα is
ϕα-smooth for each α ∈ A. As a result, the definition of Ck(W ) is
independent of the cover.
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4. We can in fact always work with the total cover {Ui}i∈I . If Ui ∩W = ∅, then
the restriction of f : W → R to ∅ is the “do-nothing function” that is
automatically assumed to be ϕi -smooth.

5. The remaining verifications are done chart-by-chart. For example, if V1 ⊂ V2

in M then V1 ∩ Ui ⊂ V2 ∩ Ui in Ui . So if f : V2 → R is ϕi -smooth on Ui ∩ V2,
then it is also ϕi -smooth on Ui ∩ V1. This gives the presheaf property.

6. If V = ∪JVj and f : V → R has the property that f |Vj∩Ui is ϕi -smooth for all
(i , j) ∈ I × J, then use V ∩ Ui = ∪J(Vj ∩ Ui ) to conclude that f |V ∩Ui is
ϕi -smooth for each i . This gives the sheaf property.

7. Finally to verify that CkM(W ) is a sheaf of subalgebras we check that it is the
case on each Ui since algebra operations are defined pointwise.

8. We have shown that (M,CkM) is an R-space. If we restrict to Ui ∼= Ωi , then for
V ∈ OpΩi and f : V → R,

f ∈ CkΩi (V )⇐⇒ ϕ∗(f ) ∈ CkUi (ϕ
−1(V ))

practically by definition. �
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Remark 2.29. (do we really need R-spaces?) Our considerations show that the
fact that CkM(U) is a R-subalgebra is mostly formal. In fact, one can give the
following, simpler definition of a Ck -manifold.

It is a pair (M,O) with M Hausdorff and O a sheaf of R-valued functions on M
such that for each x there exists an open U containing x , a homeomorphism
ϕ : U

∼→ Ω, such that for each V ∈ OpΩ and f : V → R, one has

f ∈ CkΩ(V )⇐⇒ ϕ∗(f ) ∈ O(ϕ−1V ).

This results in (U,O|U) being an R-space and we then cover M by all possible U to
see that O ≡ CkM is a sheaf of subalgebras on M.

The fact that (M,CkM) is an R-space is used all the time in this course and
conforms to the literature [2] but you are free to use this weaker definition.
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Section 3

Smooth maps and differentials
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Subsection 1

Bump functions and partitions of unity
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Definition 3.1. Let (M,CkM) be a Ck manifold. The R-algebra of Ck functions on
M is defined as Ck(M) := CkM(M).

We can of course restrict smooth functions: Ck(M)→ CkM(U) for U ∈ Op(M).
However, we can also “go back” in certain cases, thanks to some particular smooth
functions that exist.

Definition 3.2. Let f ∈ Ck(M). Define the support of f as

supp f := {x ∈ M | f (x) 6= 0}.

Lemma 3.3. There exists a smooth function H : Rn → [0, 1] such that

1. H(x) = 1 for ‖x‖ ≤ 1,

2. H(x) ∈]0, 1] for 1 ≤ ‖x‖ < 2

3. suppH is contained in {‖x‖ ≤ 2}: in other words H(x) = 0 for ‖x‖ ≥ 2.

Proof. First, consider the function f : R→ R defined as f (t) = 0 if t ≤ 0 and
f (t) = exp(−1/t) otherwise. For t > 0, one proves by induction that

f (n)(t) =
Pn(t)

t2n
exp(−1/t)

where Pn is some polynomial. Because of this limt→0+ f (n)(t) = 0 and so f is
smooth.
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x

y

y = f (x)

y = 1

The rest of the proof consists in observing that h : R→ R, h(t) =
f (2−t)

f (2−t)+f (t−1)
satisfies the following conditions:

1. it is well-defined, since for all t either 2− t or t − 1 is positive.

2. when t ≤ 1, f (t − 1) = 0 and so h(t) ≡ 1.

3. 0 < h(t) < 1 when t ∈]1, 2[ since the function f takes values in [0, 1[.

4. h(t) ≡ 0 for t ≥ 2 due to its numerator turning to zero.

5. h is smooth on R.
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x

y

y = h(|x |)

We conclude our proof by defining H(x) := h(‖x‖). This function is smooth
everywhere, including at 0. �

Remark 3.4. The functions like f or h in the proof above are smooth but not
real-analytic. Indeed, the Taylor series of f at t0 = 0 is 0 6= exp(−1/t). The
results of this subsection are specific to smooth manifold calculus.

Corollary 3.5. Let M be a Ck -manifold of dimension n. Then for each p ∈ M
there exists an open chart Vp, a Wp ∈ Op(Vp) such that Wp ⊂ Vp and a “bump”
function f ∈ Ck(M) such that

1. 0 ≤ f (x) ≤ 1 for all x ∈ M,

2. f |Wp ≡ 1,

3. supp f = {x ∈ M | f (x) 6= 0} ⊂ Vp.
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Proof. Recall the notation B(0, ε) := {x ∈ Rn | ‖x‖ < ε}. One can always find a
Ck -chart ϕ : Up

∼→ B(0, 3) centred at p. Put Vp := ϕ−1(B(0, 2 1
2

)) and
Wp := ϕ−1(B(0, 1)).
Define f by setting

f (x) =

{
H ◦ ϕ(x) if x ∈ Up
0 if x ∈ M \ Vp

with function H as in Lemma 3.3. Since H is zero outside B(0, 2), the expression
is well-defined on Up \ Vp.
Due to the properties of H, it remains to prove that f : M → R is in Ck(M).
However M = (M \ Vp) ∪ Up and the restrictions of f to M \ Vp and Up are Ck by
definition. Since Ck functions form a sheaf, we conclude. �

Remark 3.6. Since an open subset of a manifold is a manifold, we can state the
following variation of the previous corollary: for any p ∈ M and any open U
containing p there exists open Wp, p ∈ Wp ⊂ U, and a function f taking values in
[0, 1] that is ≡ 1 on Wp and has supp f ⊂ U.

Still, how did we use that M is Hausdorff?
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In fact, if we inspect closely the preceding proof, the set Vp = ϕ−1(B(0, 2 1
2

)) is
guaranteed to be closed as a subset of Up. Why is it a closed subset of the whole
of M?

For this it is enough to observe that Vp is compact in M: it the image of a
compact set, the closed unit ball, and compacts in Up remain compacts in M.

Hausdorff property then implies that compact sets are closed, so Vp is closed in M.
If S is any closed subset containing Vp then S ∩ Up is a closed set of Up and thus
has to contain Vp. The closure notation is thus sensible.

How do we prove that compact in Hausdorff is closed? Let K be compact for induced
topology in a Hausdorff space X. Let x ∈ X \K. For each y ∈ Y we can find Uy , Vy ,
x ∈ Uy , y ∈ Vy , Uy ∩ Vy = ∅. Since K is compact if follows tha there exists a finite number
of y1, ..., yn such that K ⊂ Vy1 ∪ ... ∪ Vyn .

Putting U := Uy1 ∩ ... ∩ Uyn produces an open set containing x and not intersecting any
of Vyi , hence not intersecting K. This means that K is closed.
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Partitions of unity

(This material is needed much later)
First, let us discuss the compact case.

Proposition 3.7. Let (M,CkM) be a Ck -manifold, and {Ui}i∈I be an open cover of
M. Assume that M is compact.

Then there exists a set of functions {pi}i∈I , pi ∈ Ck(M) such that

1. pi (x) ∈ [0, 1] for all x ∈ M and i ∈ I,
2. supp pi ⊂ Ui ,
3. the set {supp pi}i∈I is locally finite: for each x ∈ M there is an open U 3 x

that intersects only with a finite number of supp pi ,

4.
∑

i∈I pi (x) = 1 for all x ∈ M.

Definition 3.8. Given a manifold (M,CkM) and an open cover U = {Ui}i∈I of M,
the set of functions {pi}i∈I with the properties 1.− 4. above is called a partition of
unity subordinate to U .
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Proof.

1. Due to compactness we can choose a finite subcover Ui1 ∪ ... ∪ Uim = M and
put pi (x) = 0 for i 6= i1, ..., im. We hence assume that I = {1, ..., m}.

2. For each point x ∈ M, we recall the existence of (Vx ,Wx , f ) as in Corollary 3.5.
Each (Ui , C

k
Ui

) is a manifold, so if x ∈ Ui we can find (Vx ,Wx , f ) with Vx ⊂ Ui .

3. Do that for each i , conclude: there exists some (potentially infinite) index set
A and points {xα}α∈A such that the associated (Vxα ,Wxα , fα) satisfy
I for each α, the set Vxα (and thus Wxα ) is contained in some Ui ,
I the sets Wxα (and thus Vxα ) cover M.

One says in such situation that the coverings {Vxα}A and {Wxα}A refine the
covering {Ui}I .

4. Use compactness of M once again to choose a finite set of indices α1, ..., αl so
that {Wxα}α1,...αl is a cover. Simplify the notation by assuming α ∈ {1, ..., l}
and declaring Vα = Vxα , Wα = Wxα .

5. Define f (x) :=
∑

α fα(x). This is a function in Ck(M) that is strictly positive
since Wα form a cover and each fα ≡ 1 on Wα. Now define qα(x) := fα(x)/f .
This function is Ck on M (division by positive Ck functions is defined locally
and gives Ck functions).

6. By construction {qα}α is a partition of unity subordinate to {Vα}.
7. We conclude by setting pi =

∑
α∈Ai qα, where Ai = {α|Vα ⊂ Ui}. �
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What about non-compact?

If M is non-compact, then the problem in the construction above is apparent: too
many open sets covering the same neighbourhood. Because of this we cannot sum
the functions fα.
It turns out that one needs to impose the following equivalent axioms on M:

1. the topology on M is metrisable: there exists a distance function d such that
the metric space (M, d) gives the topology on M,

2. each connected component of the space M admits a countable basis for its
topology,

3. the space M is paracompact: any open cover {Ui} admits a locally finite
refinement.

Most non-compact manifolds satisfy this: Rn, opens in Rn, things glued from
countable amount of charts. We will not delve into these details and cite our
references [3, 2, 5] for detailed proofs. From now on, we assume that all
manifolds M admit partitions of unity subordinate to any cover.
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Corollary 3.9. Let M be a Ck -manifold. Then for any A closed subset of M and
any U ∈ Op(M), A ⊂ U, there exists b ∈ Ck(M) such that b|A ≡ 1 and supp b ⊂ U.

Proof. Let (p0, p1) be a partition of unity subordinate to the cover (U,M \ A).
For x ∈ A, we have that 1 = p0(x) + p1(x) = p0(x) since supp p1 ⊂ M \ A. Thus
b = p0 works. �

Definition 3.10. Let M be a Ck -manifold. Let S be any subset of M. Define

CkM(S) := {f : S → M | ∃U ∈ Op(M), S ⊂ U, g ∈ CkM(U) : f = g|S}.

Corollary 3.11. Let S be closed. Then any f ∈ CkM(S) and any U ∈ OpM,
S ⊂ U, there exists a function f̃ ∈ Ck(M) such that f̃ |S = f and supp f̃ ⊂ U.

Proof. By definition there exists W ∈ Op(M) and g ∈ CkM(W ) that extends f .
Let U be an open containing S. Let V = U ∩W and h = g|V . Then we choose a
function b ∈ Ck(M) as in Corollary 3.9 for S ⊂ V . Taking

f̃ (x) =

{
h(x)b(x) if x ∈ V
0 if x ∈ M \ supp b

Since M = (M \ supp b) ∪ V and CkM is a sheaf, f̃ ∈ Ck(M). �
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Subsection 2

Smooth maps
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Definition 3.12. Let (M,CkM), (N,CkN) be two Ck -manifolds (not necessarily of
the same dimension). A Ck -map from M to N is simply an R-space map
f : (M,CkM)→ (N,CkN). It is called a diffeomorphism if it admits an inverse that is
also a Ck -map.

Example 3.13. 1. A map between opens of Euclidean spaces is Ck iff it is Ck

in the ordinary sense.

2. Thus the multiplication map GLn(R)× GLn(R)→ GLn(R) is smooth.

3. The maps q : Rn+1 \ 0→ RPn and u : Rn+1 \ 0→ Sn are C∞ (by construction).

4. The antipodal map a : Sn → RPn, x 7→ Span(x) fits into the following
commutative diagram

Rn+1 \ 0

Sn
a
-

u

�
RPn.

q-

Since f ∈ C∞RPn (U)⇔ q∗(f ) ∈ C∞Rn+1\0(q−1(U)) and q∗ = u∗ ◦ a∗ we have that

u∗(a∗(f )) is smooth on an open of Rn+1 \ 0 and hence a∗(f ) ∈ C∞Sn (a−1(U)).

5. The inclusion map i : Sn ↪→ Rn+1 is smooth. This follows from the fact that
u ◦ i is smooth and pullback arguments similar to 4.
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6. Define F̃ : R2 → R3 by the following rule:

F̃ (x, y) = ((2 + cos 2πx) cos 2πy, (2 + cos 2πx) sin 2πy, sin 2πx).

This map is written using smooth functions, and is thus smooth (in manifold
or ordinary sense). Note that F̃ (x + n, y +m) = F̃ (x, y) And thus we can
induce a continuous map F : T→ R3. Note that the following diagram
commutes:

R2

T
F
-

q

�
R3

F̃-

Because of this, if f : R3 → R is smooth then f ◦ F : T→ R is smooth on T:
indeed, q∗(f ◦ F ) = f ◦ F ◦ q = f ◦ F̃ , and the latter is smooth due to the
properties of F̃ .

One can check that the image F (or of F̃ ) is the set {(y − 2)2 + z2 = 1}
rotated around the z-axis.
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Characterisation of smooth maps

Proposition 3.14. Let M,N be two Ck -manifolds. A map f : M → N is Ck if
one of the following holds:

1. (Definitional) f is an R-space map (M,CkM)→ (N,CkN).

2. (Charts) for each open chart ϕ : U
∼→ Ω of M and each open chart ψ : V

∼→ Θ

of N the map (W = f −1(V ) ∩ U)

f̃ := ψ ◦ f ◦ ϕ−1 : ϕ(W )→ Θ

is smooth.

3. (Charts II) for each x ∈ M there exists an open chart ϕ : U
∼→ Ω of M

containing x and an open chart ψ : V
∼→ Θ of N containing f (x) such that

the map (W = f −1(V ) ∩ U)

f̃ := ψ ◦ f ◦ ϕ−1 : ϕ(W )→ Θ

is smooth.

4. (Global functions only) for each g ∈ Ck(N) one has f ∗(g) ∈ Ck(M).
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On commutative diagrams I

A comment before we start proving. I keep using commutative diagrams. They
are a very nice way of book-keeping various operations. We can consider
commutative squares and triangles:

A A′
p - B′

B
h
-

f

�
C,

g
-

C′

r
?

q
- D′,

s
?

where A,B, C;A′, B′, C′, D′ some mathematical objects (sets, vector spaces,
topological spaces etc) and f , g, h; p, q, r, s some maps of those objects (functions,
linear maps, continuous maps). The drawn diagrams state that h ◦ f = g and
q ◦ r = s ◦ p.

Besides a visual presentation, these diagrams allow to do some computations.
Indeed, we can play constructor and make more complex diagrams out of simple
ones.
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On commutative diagrams II
Example:

A
f- B A′

α- B′

C

g
6

i- D

h
6

C′

β
?

δ- D′

γ
?

E

j
?

l
- F,

k
?

E′

ε
?

η
- F ′.

ζ
?

The left one tells us two identities: f ◦ g = h ◦ i and l ◦ j = k ◦ i . The right one
however implies that the following square is also commutative:

A′
α- B′

E′

ε ◦ β
?

η
- F ′.

ζ ◦ γ
?

Indeed,

η ◦ (ε ◦ β) = (η ◦ ε) ◦ β = (ζ ◦ δ) ◦ β = ζ ◦ (δ ◦ β) = ζ ◦ (γ ◦ α) = (ζ ◦ γ) ◦ α.
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On commutative diagrams III

One other nice property is the possibility to reverse invertible maps. For example,
assume given a commutaative diagram

A
f- B

C

g
?

i
- D

h
?

such that there are f −1, i−1. Then the following diagram is also commutative:

A �
f −1

B

C

g
?
�
i−1

D.

h
?

This happens because

g ◦ f −1 = i−1 ◦ i ◦ g ◦ f −1 = i−1 ◦ h ◦ f ◦ f −1 = i−1 ◦ h.
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Proof.

1⇒ 2 : Take ϕ : U
∼→ Ω, ψ : V

∼→ Θ, W = f −1(V ) ∩ U. The following diagram
commutes (f̃ := ψ ◦ f ◦ ϕ−1):

W �
ϕ−1

ϕ(W )

V

f |W
?

ψ
- Θ.

f̃
?

For this reason, if we take h ∈ Ck(Θ), its pullback f̃ ∗(h) coincides with

f̃ ∗(h) = h ◦ f̃ = ((h ◦ ψ) ◦ f ) ◦ ϕ−1;

we can put brackets as we want due to associativity.

Since (V, ψ) is a chart we have h ◦ ψ = ψ∗(h) ∈ CkN(V ), then by R-space map
property f ∗(ψ∗(h)) = h ◦ ψ ◦ f belongs to CkM(W ), and so its pullback by ϕ−1

belongs to Ck(ϕ(W )). Thus f̃ ∗(h) ∈ Ck(W ).

Taking h = pj where pj (y1, ..., yn) = yj is the j-th coordinate projection means
that f̃j is Ck . We conclude that f̃ is Ck .

2⇒ 3 : Trivial.
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3⇒ 4 : Let g ∈ Ck(N) and x ∈ M. Choose ϕ,ψ as in 3. so that the following diagram
commutes:

W �
ϕ−1

ϕ(W )

V

f |W
?
�
ψ−1

Θ

f̃
?

(x ∈ W ). Consider
f |∗W (g|V ) = f ∗(g)|W : W → R.

We want to show that f ∗(g) ◦ ϕ−1 : ϕ(W )→ R is Ck . This will suffice since
we can cover M by opens like W and use sheaf condition. Note that

g ◦ f ◦ ϕ−1 = (g ◦ ψ−1) ◦ (ψ ◦ f ◦ ϕ−1) = (g ◦ ψ−1) ◦ f̃ .

Here (g ◦ ψ−1) is Ck on Θ. We are thus pre-composing a (restriction of) a Ck

function by a Ck -function, that will remain Ck .
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4⇒ 1 : Let g ∈ CkN(V ). Following similar reasoning as in Corollary 3.5 and Remark
3.6, for each point y ∈ V there exists an open neighbourhood Wy of y such
that Wy ⊂ V , and a function b ∈ Ck(N) that is unity on Wy and has
supp b ⊂ V .
Let g̃ be a function on M defined as

g̃(x) =

{
g(x)b(x) if x ∈ V
0 if x ∈ M \ supp b

since supp b ⊂ V , one has M = (M \ supp b) ∪ V , and so we use sheaf property
of CkN to glue g · b ∈ Ck(V ) with 0 ∈ Ck(M \ supp b) into a Ck -function g̃. By
construction g̃ coincides with g on W y . By assumption f ∗(g̃) ∈ CkM(M). But

f ∗(g̃)|f −1(Wy ) ≡ f
∗(g)|f −1(Wy ).

Covering V by all possible Wy , we obtain the result. �

Example 3.15. Let f : R→ S1 be the map α 7→ (cosα, sinα). Then this map is
smooth since for each of the four standard charts ϕ±0,1 : U±0,1 →]− 1, 1[ the
composition of ϕ’s with f is smooth. For example, for ϕ+

0 : {x0 > 0} →]− 1, 1[ the
composition ϕ+

0 ◦ f (α) = sinα is smooth.
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Example 3.16. (Hopf fibration). The natural isomorphism C ∼= R2 is a smooth
map. We use it to identify

S3 = {(z, w) ∈ C2 | |z |2 + |w |2 = 1}, S2 = {(z, x) ∈ C× R | |z |2 + x2 = 1}.

We now define f : S3 → S2 by setting f (z, w) = (2zw, |z |2 − |w |2). This works
since the second component is real and

|2zw |2 + (|z |2 − |w |2)2 = (|z |2 + |w |2)2 = 1.

If needed, one can write z = x0 + ix1, w = x0 + ix2 and get explicit formulas for
the map p. We leave as an exercise to reflect on why it is smooth (can actually
obtain it as a restriction of a smooth map R4 → R3).
Note that if p(z, w) = p(z ′, w ′) is only possible if (z, w) = (λz, λw) where
λ = exp(iθ) (again, exercise). For this reason p−1(y) ∼= S1.
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Notation 3.17. For M,N Ck -manifolds, denote Ck(M,N) to be the set of
Ck -maps. We can use 3.14.4 to quickly verify that the composition of Ck -maps is
Ck , hence

Ck(M,N)× Ck(N,L) −→ Ck(M,L), (f , g) 7→ g ◦ f

is well defined: for h ∈ Ck(L), (g ◦ f )∗(h) = f ∗(g∗(h)) ∈ Ck(M).

Lemma 3.18. Let M,N be Ck -manifolds. For U ∈ Op(M), consider
Ck(U,N) ⊂ F(U,N). This defines a sheaf.

Proof.

1. If F : U → N is Ck take V ∈ Op(U) and consider the restriction F |V : V → N.
For each f ∈ Ck(N) the composition f ◦ F belongs to CkU(U). However,
f ◦ (F |V ) = (f ◦ F )|V and since CkU is a presheaf, we have that f ◦ (F |V ) is Ck

2. This proves that {Ck(U,N)}U∈OpM is a presheaf.

3. Let U = ∪iUi and consider F : U → N such that F |Ui ∈ C
k(Ui , N). Take

f ∈ Ck(N). We have, by assumption, that

(f ◦ F )|Ui = f ◦ (F |Ui ) ∈ C
k(Ui ) for each Ui .

Hence f ◦ F ∈ Ck(U) and this proves the sheaf property. �
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Subsection 3

The tangent space
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Let M be a smooth manifold. Some questions that we will attempt to address:

1. Abstractly speaking, what is “tangent space”? Why should we care about it?
Our answer will be: tangent space is related to linear approximation of
smooth maps, and consists of abstract directional derivative operators of
smooth functions.

2. How does one proceed to define differential of smooth maps?

3. When M = {f = 0} (for “good enough” f ), what is the relation between this
abstract tangent space and the concrete one, ker df (x) = 0?

4. What do all tangent spaces bundled together form? What is a tangent-vector
valued function?
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We put k =∞ in this subsection, even though most statements are doable for
k ≥ 2. Our presentation is very close to Lee [4].

Let Ω ⊂ Rn. What does it mean to have a tangent vector at p ∈ Ω? Our answer:
directional derivatives:

f ∈ C∞(Ω), v ∈ Rn, ṽp(f ) :=
d

dt

∣∣∣∣
t=0

f (p + tv) =
∑
i

v i
∂f

∂x i
(p)

(indices up! Physics notation).

Lemma 3.19. The assignment f 7→ ṽp(f ) is an R-linear map C∞(Ω)→ R that
satisfies:

ṽp(f g) = ṽp(f )g(p) + f (p)ṽp(g).

Proof. Leibniz rule for derivatives. �

Definition 3.20. A derivation at p ∈ Ω is an R-linear map X : C∞(Ω)→ R that
satisfies the Leibniz rule:

X(f g) = X(f )g(p) + f (p)X(g).

We denote Derp(C∞(Ω),R) the set of all derivations at p.
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Lemma 3.21. Let Ω be an open subset of Rn, then
1. The set Derp(C∞(Ω),R) is an R-vector space and the map

Rn → Derp(C∞(Ω),R), v 7→ ṽp is R-linear.
2. If f is a constant function then X(f ) = 0.

3. If f (p) = g(p) = 0, then X(f g) = 0.

Proof.

1. The vector space structure is given by (X + Y )(f ) := X(f ) + Y (f ),
(λX)(f ) := λ(X(f )). The linearity of the map v 7→ ṽp can be verified using
coordinate representation ṽp(f ) =

∑
i v
i ∂f
∂x i

(p):

˜(λv + w)p(f ) =
∑
i

(λv i + w i )
∂f

∂x i
(p) = λ

∑
i

v i
∂f

∂x i
(p) +

∑
i

w i
∂f

∂x i
(p).

2. Since f = λ · 1 where 1 is the unity function on Ω it suffices to show
X(1) = 0. Yet

X(1) = X(1 · 1) = 1 · X(1) + X(1) · 1 = 2X(1)

and so X(1)=0.

3. X(f g) = f (p)X(g) + X(f )g(p) = 0 + 0 = 0. �
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Tangent space to p ∈ Ω

Definition 3.22. The tangent space to Ω at p is defined as

TpΩ := Derp(C∞(Ω),R).

This is in fact a finite dimensional space.

Proposition 3.23. Let Ω be a convex subset of Rn. The map
Rn → Derp(C∞(Ω),R), v 7→ ṽp is an isomorphism. In particular, a basis of TpΩ

is given by

∂1|p :=
∂

∂x1

∣∣∣∣
p

, ..., ∂n|p :=
∂

∂xn

∣∣∣∣
p

,

where ∂
∂x i

∣∣
p

(f ) = ∂f
∂x i

(p).

The notation will be further simplified: when the context is clear, we write
∂i ≡ ∂i |p.
Proof. The statement relies on the first order Taylor formula for functions. Let
f ∈ C2(Ω), then

f (x) = f (p) +
∑
i

(x i − pi )gi (x)

where gi ∈ C1(Ω).
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This formula is proved as follows:

f (x)− f (p) =

∫ 1

0

d

dt
(f (tx + (1− t)p)) dt

=

∫ 1

0

∑
i

∂i f (tx + (1− t)p) ·
d

dt
(tx i + (1− t)pi )dt

=
∑
i

(x i − pi )
∫ 1

0
∂i f (tx + (1− t)p)dt.

We used convexity of Ω and Leibniz integral rule to assure the properties of
gi (x) =

∫ 1
0 ∂i f (tx + (1− t)p)dt. Note that automatically ∂i f (p) = gi (p).

Now, let X ∈ TpΩ. Then, denoting by x i the function x 7→ x i ,

X(f ) = X(f (p) +
∑
i

(x i − pi )gi ) = 0 +
∑
i

(
X(x i − pi )gi (p) + (pi − pi )X(gi )

)
and so

X(f ) =
∑
i

X(x i )gi (p) =
∑
i

X(x i )∂i f (p).

Thus for any X ∈ TpΩ, there is always v = (X(x1), ..., X(xn)) in Rn such that
ṽp = X. This proves that Rn → TpΩ is surjective.

If ṽp = 0 then v i = ṽp(x i ) =
∑

i v
i∂i (x

i )|p = 0. This proves that Rn → TpΩ is
injective. �
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Tangent space to p ∈ M

Let (M,C∞M ) be a smooth manifold.

Definition 3.24. A derivation at p ∈ M is an R-linear map X : C∞(M)→ R that
satisfies the abstract Leibniz rule:

X(f g) = X(f )g(p) + f (p)X(g).

We denote Tp(M) ≡ Derp(C∞(M),R) the set of all derivations at p, and call it the
tangent space to M at p.

Possible objections:
I it is “too much”: why does it depend on C∞(M) and not on a more local
C∞(U) for p ∈ U ∈ Op(M)?

I it is “too little”: global functions restrict to local functions, but not all local
functions prolong to global functions.

By addressing the locality phenomenon we shall arrive at another, equivalent
definition.
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Lemma 3.25. Let M be a smooth manifold, then

1. The set TpM = Derp(C∞(M),R) is an R-vector space.

2. If f is a constant function on M then X(f ) = 0.

3. If f (p) = g(p) = 0, then X(f g) = 0.

Proof. Same as Lemma 3.21. �

We will study TpM by relating it to tangent spaces of other manifolds. Tangent
vectors can be pushed forward using the pullback of functions:

Definition 3.26. Let F : (M,C∞M )→ (N,C∞N ) be a smooth map and p ∈ M. The
pushforward along F at p, or the differential of F at p, is the map
F∗ : TpM → TF (p)N defined as

X ∈ TpM 7→ F∗X ∈ TF (p)N, F∗X(g) := X(F ∗(g)) for g ∈ C∞(N).

We shall sometimes interchange the notation F∗X, F∗(X).
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Example 3.27. If we have a smooth map Rn ⊃ Ω
F→ Θ ⊂ Rm between two

convexes, let us examine what it does to ṽp =
∑
v i∂i ∈ TpΩ. Denoting (x1, ..., xn)

the points of Rn and (y1, ..., ym) the points of Rm, we have

F∗ṽp(g) =
∑
i

v i
∂

∂x i

∣∣∣∣
x=p

g(F (x)) =
∑
i ,j

v i

(
∂

∂y j

∣∣∣∣
y=F (p)

g(y)

)
·
∂F j

∂x i
(p)

=
∑
i ,j

(J ji v
i )∂jg(F (p)),

where J ji is the Jacobi matrix for the map F at p. In other words,

F∗ṽp = ˜dF (p)(v) where dF (p) : Rn → Rm is the ordinary differential map. We can
conclude by saying that the following diagram commutes:

Rn
dF (p)- Rm

TpΩ

∼
?

F∗
- TF (p)Θ

∼
?

For this reason, we shall often go back and forth between F∗ and dF (p) in the
context of opens in Rn.
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Properties of pushforwards

Proposition 3.28. Let F : M → N and G : N → K be two smooth maps, p ∈ M.

1. The map F∗ : TpM → TF (p)N is well-defined and is R-linear.
2. (G ◦ F )∗ = G∗ ◦ F∗ and (idM)∗ = idTpM (this property is called functoriality).

3. If F is a diffeomorphism then F∗ is an isomorphism.

Proof.
1. If X ∈ TpM then

F∗X(f g) = X(F ∗(f g)) = X(F ∗(f ) · F ∗(g))

= F ∗(f )(p) · X(F ∗(g)) + X(F ∗(f )) · F ∗(g)(p)

= f (F (x))F∗X(g) + F∗X(f )g(F (p))

so F∗ is indeed well-defined. To check the linearity,

F∗(λX + µY )(f ) = (λX + µY )(f ◦ F ) = λX(f ◦ F ) + µY (f ◦ F )

= λF∗X(f ) + µF∗Y (f ).

2. (G ◦ F )∗X(f ) = X(f ◦ G ◦ F ) = F∗X(f ◦G) = G∗(F∗X(f )). X(f ◦ idM) = X(f ).
3. A diffeomorphism is a map F : M → N that admits smooth inverse
G : N → M. Since F 7→ F∗ preserves compositions and identities, it sends
mutually inverse maps to mutually inverse maps. �
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The following proposition formalises the fact that TpM is local:

Proposition 3.29. Let M be a smooth manifold and U ∈ Op(M). Denote
i : U ↪→ M the natural inclusion map. Then for each point p ∈ U, the map
i∗ : TpU → TpM is an isomorphism.

Proof.

1. First, prove: f , g ∈ C∞(M) and X ∈ TpM, if h = f − g ≡ 0 on some
neighbourhood V of p, we have X(f ) = X(g).

Corollary 3.5 implies that there exists b ∈ C∞(M) which is equal to 1 on
W ⊂ V and has support contained in V . Denote u = 1− b. By construction
u ≡ 1 on supp h so u · h = h everywhere. But u(p) = h(p) = 0 and so

X(h) = X(uh) = u(p)X(h) + X(u)h(p) = 0.

2. The injectivity of i∗. Let X ∈ TpU and i∗X(f ) = 0 for all f ∈ C∞(M).
However if g ∈ C∞(U), using a bump function we can construct g̃ ∈ C∞(M)

that agrees with g on some p ∈ W ⊂ U. Because of 1. we have:

X(g) = X(g̃|U) = X(g̃ ◦ i) = i∗X(g̃) = 0

since this is true for all g, we conclude that X = 0.
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3. The surjectivity of i∗. Let Y ∈ TpM. Define Ỹ ∈ TpU by setting Ỹ (f ) = Y (f̃ )

for an extension f̃ : M → R that agrees with f : U → R on some
neighbourhood of p. Because of 1. this definition does not depend on choice
of f̃ .

If we have f , g ∈ C∞(U), we can choose f̃ · g = f̃ · g̃ as an extension of the
product. Thus

Ỹ (f · g) = Y (f̃ · g) = f̃ (p)Y (g̃) + Y (f̃ )g̃(p) = f (p)Ỹ (g) + Ỹ (f )g(p).

It only remains to see if i∗Ỹ = Y . For this,

i∗Ỹ (f ) = Ỹ (f |U) = Y (f̃ |U) = Y (f )

the last equality uses 1. since the extension f̃ |U is equal to f on some
neighbourhood of p. �

As a consequence, we shall identify TpU ∼= TpM along the canonical inclusion map
i : U ↪→ M.
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Corollary 3.30. Let Ω ⊂ Rn be any open subset and p ∈ Ω. Then the map
Rn → TpΩ, v 7→ ṽp, is an isomorphism. Moreover, for any smooth map Ω

F→ Θ,
with Θ ∈ Op(Rm), the following diagram commutes

Rn
dF (p)- Rm

TpΩ

∼
?

F∗
- TF (p)Θ

∼
?

with the upper map denoting the ordinary differential of F .

Proof. The pairs (Ω, C∞Ω ) and (Θ, C∞Θ ) are smooth manifolds that admit covers
by open balls as charts. Let B(p, δ) ⊂ Ω be such that F (B(p, δ)) ⊂ B(F (p), ε).
The following diagram commutes:

TpB(p, δ)
F∗- TF (p)B(F (p), ε)

TpΩ

∼
?

F∗
- TF (p)Θ.

∼
?

Since balls are convex, the rest follows from Proposition 3.23 and Example 3.27.
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Example: Sn

Example 3.31. 1. Recall that Sn = F−1(1) for F (x) = ‖x‖2. We can view F as
C∞ function from M = Rn+1 \ 0 to R>0.

2. Denote i : Sn → Rn+1 \ 0 = M the canonical inclusion (smooth). Let p ∈ Sn.
We want to relate TpSn to a subspace in Ti(p)M ∼= Rn+1.

3. Note that F ◦ i , x 7→ F (x) = 1 is a constant function. For this reason
F∗i∗(X)(f ) = X(f (1)) = 0 for all X ∈ TpSn and f ∈ C∞(M). This means that
im i∗ ⊂ ker F∗.

4. Recall u : M → Sn, x 7→ x/‖x‖ (smooth). Since u ◦ i = idSn , the composition
u∗ ◦ i∗ is also an identity on TpSn. This proves that i∗ is injective (immersion
at p), meaning TpSn ∼= im i∗.

5. We now claim that im i∗ = ker F∗.

6. First, dim im i∗ = dimTpSn = n. Second, by Corollary 3.30,
dim ker F∗ = dim ker dF (p).

7. However, dF (p) = 2(p0, ..., pn) is a nonzero linear form, and so
dim ker dF (p) = (n + 1)− 1 = n.

8. We conclude that TpSn ∼= ker dF (p). This is natural since

ker dF (p) = {v ∈ Rn+1 |v0p0 + ...+ vnpn = 0}

is the hyperplane orthogonal to the vector p ∈ Sn.
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ker F∗ ∼= TpSn

p

0
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Local coordinate presentation I

Corollary 3.32. Let M be a smooth manifold of dimension n. Then for each
p ∈ M, the vector space TpM is finite dimensional, of dimension n.

Proof. Choose a smooth chart (U,ϕ) containing p. Then the following chain of
isomorphisms suffices:

Rn ∼= Tϕ(p)ϕ(U) �
∼
ϕ∗

TpU ∼= TpM.

Note that the identification above depends, in particular, on the choice of ϕ. �

Notation 3.33. In the situation above, we can use ϕ : U ∼= Ω to write a
particular basis for TpM. If q ∈ U and ϕ(q) = (x1(q), ..., xn(q)), then we denote

∂i |p ≡
∂

∂x i

∣∣∣∣
p

:= ϕ−1
∗

∂

∂x i

∣∣∣∣
x=ϕ(p)

.

This set is a basis of TpU that we canonically identify with TpM.
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Local coordinate presentation II

I personnally find that dropping ϕ from the notation is a bit confusing and
misleading. The partial derivatives do not exist in a given way, the space TpM
usually has no canonical basis!

I rather prefer the following. Let V ∈ TpM, then to say that V has a
decomposition with respect to basis given by ϕ, we write

ϕ∗V =
∑

V i
∂

∂x i

∣∣∣∣
ϕ(p)

.

The bar notation |ϕ(p) signifying the point will sometimes be implicitly
understood; in fact, it is entirely possible to think of ∂/∂x i as of a vector field,
something that we will discover in future lectures.

Question: how does that depend on ϕ? In other words, if we have two chart
structures ϕ,ψ and a decomposition of ϕ∗V , how to compute ψ∗V ?
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Coordinate transformations

Assume that U has two chart maps, ϕ : U
∼→ Ω and ψ : U

∼→ Θ (this can happen
for example if U is an intersection of two charts). The smoothness of M guarantees
that J := ψ ◦ ϕ−1 : Ω→ Θ is a smooth map.

Let p ∈ U and
I for q ∈ U denote ϕ(q) = (x1(q), ..., xn(q)) and { ∂

∂x1 , ...,
∂
∂xn
} the basis of

Tϕ(p)Ω,

I for q ∈ U denote ψ(q) = (y1(q), ..., yn(q)) and { ∂
∂y1 , ...,

∂
∂yn
} the basis of

Tψ(p)Θ.

The following two diagrams are commutative:

U TpM

Ω
J = ψ ◦ ϕ−1

-

ϕ−1 -

Θ,

ψ−1
�

Tϕ(p)Ω
J∗
-

ϕ−1
∗ -

Tψ(p)Θ,

ψ−1
∗

�

and thus we will know everything once we understand the action of J∗. The latter
is expressed via the differential of J using Corollary 3.30.
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The usual notation is as follows. The map J : Ω→ Θ allows to write
y i (x) := y i (ψ(ϕ−1(x))). The Jacobi matrix is the given by

J ji =
∂y j

∂x i
(ϕ(p))

because of Corollary 3.30,

J∗
∂

∂x i
= J∗ẽi =

∑̃
j

J ji ej =
∑
j

∂y j

∂x i
(ϕ(p))

∂

∂y j
,

where ei are the standard basis vectors of Rn. Thus the transformation rule for the
basis vectors of TpM is simply the chain rule. Similarly,

ϕ−1
∗

∂

∂x i
= ψ−1

∗ J∗
∂

∂x i
=
∑
j

∂y j

∂x i
(ϕ(p))ψ−1

∗
∂

∂y j
.

If we were to drop ϕ and ψ as in Notation 3.33 we could write:

∂

∂x i

∣∣∣∣
p

=
∑
j

∂y j

∂x i
(ϕ(p))

∂

∂y j

∣∣∣∣
p

.

Again, I find it a little misleading due to the dependence on chart maps.
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For V ∈ TpM, assume that ϕ∗V =
∑

i X
i ∂
∂x i

∣∣
ϕ(p)

. Then

ψ∗V = ψ∗(ϕ
−1
∗ ϕ∗V ) = J∗ϕ∗V.

so if ψ∗V =
∑

i Y
i ∂
∂y i

∣∣
ψ(p)

, we have

∑
i

Y i
∂

∂y i
= J∗

∑
i

X i
∂

∂x i
=
∑
i ,j

X i
∂y j

∂x i
(ϕ(p))

∂

∂y j

and thus we derive the usual transformation rule for the coefficients:

Y i =
∑
j

X j
∂y i

∂x j
(ϕ(p)).

The mnemoinc rule here is that x ’s are summed with X’s and the “lowered index”
of the derivative is always summed with the “upper index” of the tangent vector
coefficient.
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Example 3.34. 1. Consider i : S1 → R2 = {(x, y)}. We have shown above that
for each point p ∈ S1 the map i∗(p) : TpS1 → TpR2 injectively maps TpS1 onto
the subspace of TpR2 consisting of all derivations a∂x |p + b∂y |p such that
axp + byp = 0 where p = (xp, yp).

2. As such we can write TpS1 ∼= Span(xp∂y − yp∂x ). Let V ∈ TpS1 be the unique
vector such that i∗V = xp∂y − yp∂x . How to represent it in a coordinate chart?

3. For instance, assume that xp > 0. Let ϕ ≡ ϕ+
x : S1 ∩ {x > 0} →]− 1, 1[ be the

coordinate projection (x, y) 7→ y . I want to compute ϕ∗V . For this, I use the
normalisation map u : R2 \ 0→ S1 and u ◦ i = idS1 :

ϕ∗V = (ϕ ◦ u ◦ i)∗V = (ϕ ◦ u)∗ ◦ i∗V.

4. The map ϕ ◦ u was encountered before, we called it Φ. It acts as

Φ(x, y) =
y√

x2 + y2
.

We can then compute its differential and use it to conclude.
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5. Let us compute the differential

dΦ(x, y) =
dy√
x2 + y2

−
xdx + ydy

(
√
x2 + y2)3

,

where I denote dx, dy the canonical dual basis: dx(a, b) = a, dy(a, b) = b.

6. Note that xdx + ydy is always zero on im i∗ since this is the differential of the
equation x2 + y2 − 1. Thus at p ∈ S1 ∩ {x > 0}, we have

dΦ(xp, yp)(−yp, xp) = xp.

In terms of derivations, we can write that V, i∗V = xp∂y |p − yp∂x |p becomes

ϕ∗V = xp∂t |t=yp

where t ∈]− 1, 1[ is the coordinate in the image of ϕ.
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Coordinate expression for pushforwards I

Let F : M → N be smooth. Let p ∈ M. Take an open chart (V, ψ) containing
F (p) ∈ N and find an open chart (U,ϕ) containing p ∈ M such that F (U) ⊂ V
(take intersections if needed).

Denote F̃ := ψ ◦ F ◦ ϕ−1. The following diagrams commute:

Ω
F̃- Θ Tϕ(p)Ω

F̃∗- Tψ(F (p))Θ

U

ϕ ∼6

F |U- V

∼ ψ
6

TpM

ϕ∗ ∼6
F∗- TF (p)N

ψ∗ ∼6

If we denote (x1, ..., xm) the coordinates in Ω and (y1, ..., yn) the coordinates in Θ,
then repeating the same calculus as in Example 3.27, we get

F̃∗
∂

∂x i
=
∑
j

∂F̃ j

∂x i
(ϕ(p))

∂

∂y j
.

Here
(
∂F̃ j

∂x i
(ϕ(p))

)j=1,n

i=1,m
is the Jacobi matrix of the map F̃ : Ω→ Θ at ϕ(p).
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Coordinate expression for pushforwards II

If V ∈ TpM is such that ϕ∗V =
∑
X i ∂

∂x i
|ϕ(p), then, just like before,

ψ∗(F∗V ) = F̃∗(ϕ∗V )

And so if ψ∗(F∗V ) =
∑
Y i ∂

∂x i
|ψ(F (p)) we can repeat the same analysis as before to

conclude that

∑
i

Y i
∂

∂y i

∣∣∣∣
ψ(F (p))

= F̃∗

∑
j

X j
∂

∂x j

∣∣∣∣
ϕ(p)

 =
∑
i ,j

X j
∂F̃ i

∂x j
(ϕ(p))

∂

∂y i

∣∣∣∣
ψ(F (p))

and so

Y i =
∑
j

∂F̃ i

∂x j
(ϕ(p))X j .

The mnemonic rules remain the same.
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Alternative definition: germs

The canonical identification suggests that what matters for TpM are only
functions on some small neighbourhood of p ∈ M. Indeed, if we have

M ⊃ U0 ⊃ U1 ⊃ ... ⊃ Un ⊃ ...

where all Ui contain x then

TpM ∼= TpU0
∼= TpU1

∼= ... ∼= TpUn ∼= ...

To formalise that define

Definition 3.35. The R-algebra of smooth germs at p, C∞p , is defined as follows:

1. An element of C∞p is an equivalence class [f , U] ≡ [(f , U)] where p ∈ U ∈ OpX
and f ∈ C∞(U). We put (f , U) ∼ (g, V ) if f ≡ g on U ∩ V .

2. The algebra structure is given by

[f , U] + [g, V ] = [f + g, U ∩ V ], λ[f , U] = [λf , U],

[f , U] · [g, V ] = [f · g, U ∩ V ].
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Just as before, denote Der(C∞p ,R) the set of R-linear maps X : C∞p → R that
satisfy the rule

X([f , U] · [g, V ]) = f (p)X([g, V ]) + X([f , U])g(p),

and this definition makes sense since all representatives of a germ take the same
value at p. The set Der(C∞p ,R) is a vector space, same proof.

Proposition 3.36. Let M be a smooth manifold and p ∈ M. The map

Der(C∞p ,R)→ TpM, X 7→ X̃,

that takes X to a derivation defined by X̃(f ) := X([f ,M]), is an isomorphism.
Consequently, one can define TpM as derivations of germs.

Proof. Usual bump function games to construct the inverse. Elaborate in TD. �
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Tangent vectors to curves

Let M be a manifold, a 6= b and γ :]a, b[→ M a smooth map (makes sense, since
]a, b[ is a smooth 1-dimensional manifold). Let t0 ∈]a, b[ and p = f (t0).

Denoting by d
dt

∣∣
t0

the tangent basis vector to ]a, b[ at t0, we define

γ′(t0) := γ∗
d

dt

∣∣∣∣
t0

∈ TpM.

If (U,ϕ) is some coordinate chart that contains the image of some neighbourhood
of t0, then we can write ϕ ◦ γ(t) = (γ1(t), ..., γn(t)) and compute:

ϕ∗γ
′(t0) =

∑
i

dγ i

dt
(t0) ·

∂

∂x i

∣∣∣∣
γ(t0)

.

Lemma 3.37. Every X ∈ TpM is a tangent vector to some curve.

Proof. Find a coordinate chart (U,ϕ) centred at p. Let X =
∑

i X
i∂i . Define

γ :]− ε, ε[→ M by setting γ(t) := ϕ−1((tX1, ..., tXn)). If ε is small enough γ is
well defined, γ(0) = p and ϕ∗γ′(t0) =

∑
X i∂i . �
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Section 4

Submersions, immersions, submanifolds
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We can use our generalisation of the differential to study maps of smooth
manifolds.

Definition 4.1. Let F : M → N be a smooth map.

1. F is of rank k at p ∈ M if for F∗ : TpM → TF (p)N, dim imF∗ = k.

2. In particular, F is an immersion at p if k = dimM (in other words, F∗ is
injective), and

3. F is a submersion at p if k = dimN (in other words, F∗ is surjective).

We shall say that

1. F is of constant rank k,

2. an immersion,

3. or a submersion,

if the mentioned quality is true at each p ∈ M.

Remark 4.2. True stories:

1. F immersion (at p) =⇒ dimM ≤ dimN,

2. F submersion (at p) =⇒ dimM ≥ dimN,

3. F of rank k (at p) =⇒ dimN ≤ k ≤ dimM.
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Some examples

Example 4.3. 1. Any inclusion of an open U ↪→ M is of (maximal) constant
rank k = dimM.

2. Let π : M → N be a smooth map such that there exists U ⊂ N and
s ∈ C∞(U,M) satisfying π ◦ s = idU . Then for each p ∈ U, we have

s∗ : TpN → Ts(p)M, π∗ : Ts(p)M → TpN, π∗ ◦ s∗ = idTpN .

This implies that s is an injective immersion on U and π a surjective
submersion on s(U).

3. In particular, Example 3.31 provided us with two smooth maps
u : Rn+1 \ 0→ Sn and i : Sn → Rn+1 \ 0 that satisfy u ◦ i = idSn . We conclude
that i is an injective immersion and u is a surjective submersion.

4. The map F : R→ R2, t 7→ (t, t3) is injective (its image is the cubic graph)
and is an immersion. Indeed, dF (t) = t(1, 3t2) is never zero. The map F is
also a homeomorphism on its image.

5. The map G : R→ R, t 7→ t3 is surjective (in fact, bijective), but is not a
submersion (or immersion), for dG(0) = 0 as a linear map.

6. The map f : R→ S1, α 7→ (cosα, sinα) of Example 3.15 is a surjective
submersion.
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7. Let n ≥ k. The projection map π : Rn → Rk that sends
(x1, ..., xn)→ (x1, .., xk) is a submersion: the differential dπ(x) is of maximal
rank k at each x ∈ Rn. π is also surjective.

8. Let n ≤ k. The inclusion map ι : Rn → Rk that sends
(x1, ..., xn)→ (x1, .., xn, 0, ..., 0) is an immersion: the differential dι(x) is of
maximal rank n at each x ∈ Rn. ι is also a homeomorphism on its image.

9. The map Rn+1 \ 0→ RPn is a surjective submersion. The map Sn → RPn is
also surjective, of constant rank n.

Let us also present some examples without going into detail.

10. The map R2 → T is surjective of constant rank 2.

11. The map GL+
2 (R)→ SL2(R) defined by sending M to 1√

detM
M is a surjective

submersion.

12. Define F̃ : R2 → R3 by the following rule:

F̃ (x, y) = ((2 + cos 2πx) cos 2πy, (2 + cos 2πx) sin 2πy, sin 2πx).

One can check that F̃ is an immersion. It is not injective, but it respects the
torus equivalence relation on R2: F̃ (x + n, y +m) = F̃ (x, y) This can be used

to induce a smooth map F : T→ R3 that is an immersion and a
homeomorphism onto its image.
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Subsection 1

Local form of sub/immersions
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Local diffeomorphisms
Let F : M → N be C∞ and p ∈ M. Consider the case when dimM = dimN.

Theorem 4.4. In the situation above, the following are equivalent:

1. F∗ : TpM → TF (p)N is a bijection at p.

2. F is a local diffeomorphism at p: there exists U ∈ OpM containing p such
that F (U) is open and F |U : U → F (U) is a diffeomorphism.

We can illustrate the second property via the following commutative diagram:

U ⊂ - M

F (U)

F |U ∼
?

⊂ - N.

F
?

Proof. If 2. is valid, then the diagram above gives, using Proposition 3.29:

TpU ⊂
∼- TpM

TF (p)F (U)

(F |U)∗ ∼
?

⊂
∼
- TF (p)N,

F∗
?

so the linear map F∗ : TpM → TF (p)N can only be a bijection.
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Let us now understand why 1. implies 2.. We can take a chart V containing F (p).
The set F−1(V ) then contains p, and let U be some open chart containing p. Then
W = F−1(V ) ∩ U is also a chart and we have the following commutative diagram:

W ⊂ - M

V

F |W
?
⊂ - N.

F
?

Let ϕ : W
∼→ Ω and ψ : V

∼→ Θ be the corresponding chart maps. If we denote
F̄ = ψ ◦ F ◦ ϕ−1, the following diagram commutes:

Ω �
ϕ

∼
W ⊂ - M

Θ

F̄
?
�∼
ψ

V

F |W
?
⊂ - N.

F
?

Moreover, the differential dF̄ (ϕ(p)) of the smooth map F̄ : Ω→ Θ is invertible.
Certainly such maps must have been studied in analysis?
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Theorem 4.5. (Inverse function theorem [3]) Let Ω,Θ be two opens in Rn,
f : Ω→ Θ a C1-map, and let df (x) : Rn → Rn be a bijection for some x ∈ Ω.
Then f is a local diffeomorphism: there is an open subset U ⊂ Ω that contains x,
C1-map g : f (U)→ U such that g is inverse to f |U : U → f (U) ⊂ Θ. �

This theorem may have been encountered already. If not, no need to worry: in
fact, its proof is not needed to be remembered in order to use it!

We apply Theorem 4.5 to F̄ . Thus there exists U ⊂ Ω such that F̄ |U is a
diffeomorphism and the diagram below commutes:

U ⊂ - Ω
ϕ−1

∼
- W ⊂ - M

F̄ (U)

F̄ |U ?
⊂- Θ

F̄
? ∼
ψ−1
- V

F |W
?
⊂ - N.

F
?

We collapse this diagram into a square by taking U = ϕ−1(U) and using all the
inclusions:

U ⊂ - M

F (U)

F |U ∼
?

⊂ - N.

F
?

This completes the proof. �
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We can conclude the following generalisation of a classical result from analysis:

Corollary 4.6. Let F : M → N be a smooth map. If F is a bijection and for each
p ∈ M, the map F∗ : TpM → TF (p)N is also a bijection, then F is a
diffeomorphism.

Proof. We have the inverse F−1 : N → M. Since our previous theorem implies
that F is a local diffeomorphism, for each y ∈ N there exists an open neighborhood
Vy such that F−1|Vy is smooth (uniqueness of inverses). Since N = ∪yVy and
smooth maps to M form a sheaf (Lemma 3.18), we conclude that F−1 is smooth. �
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Canonical submersion and immersion theorems
We have seen that π : Rm → Rn, (x1, ..., xm)→ (x1, ..., xn) (m ≥ n) is a
submersion, and ι : Rm → Rn, (x1, ..., xm)→ (x1, ..., xm, 0, ..., 0) (m ≤ n) is an
immersion.

Theorem 4.7. (canonical submersion/immersion) Let F : M → N be a
smooth map, m = dimM, n = dimN.
1. If F is a submersion at p, then there exist charts ϕ : U

∼→ Ω containing p and
ψ : V

∼→ Θ containing F (p) such that the following diagram commutes:

U
ϕ

∼
- Ω

V

F
? ∼

ψ
- Θ.

π
?

In other words, F looks locally like a projection.

2. If F is an immersion at p, then there exist charts ϕ : U
∼→ Ω containing p and

ψ : V
∼→ Θ containing F (p) such that the following diagram commutes:

U
ϕ

∼
- Ω

V

F
? ∼

ψ
- Θ.

ι
?

In other words, F looks locally like a subspace inclusion.

112



Proof of the submersion part I

1. Given any permutation σ : {1, ..., n} → {1, ..., n}, note that the induced map

σ∗ : Rn → Rn, (x1, ..., xn) 7→ (xσ(1), ..., xσ(n))

is a linear map and hence a diffeomorphism. If we have any chart ψ : V
∼→ Θ,

then we can compose ψ with σ∗|Θ to obtain a new chart ψσ : V
∼→ σ∗(Θ).

2. Now we take any charts ϕ : U
∼→ Ω containing p and ψ : V

∼→ Θ containing
F (p) (we have shown how to construct them in Theorem 4.4):

U
ϕ

∼
- Ω

V

F
? ∼

ψ
- Θ.

F̄
?

The map F̄ = ψ ◦ F ◦ ϕ−1, by assumption, has the property that its
differential is of rank n. This means that the rectangular matrix

J ij =
∂F̄ i

∂x j
(ϕ(p)), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

has rank n (n ≤ m). Here (x1, ..., xm) denote coordinates in Ω.
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Proof of the submersion part II

3. By using 1. if necessary, we can permute the coordinates (y1, ..., yn) of Θ

diffeomorphically. Without loss of generality, we can thus assume that the
square matrix

J ij =
∂F̄ i

∂x j
(ϕ(p)), 1 ≤ i ≤ n, 1 ≤ j ≤ n,

is invertible.

4. Construct the following map:

G : Ω→ Rm, x = (x1, ..., xm) 7→ (F̄ 1(x), ..., F̄ n(x), xn+1, ..., xm).

If we denote by det dG(ϕ(p)) the determinant of the Jacobian matrix of G at
ϕ(p), we note that det dG(ϕ(p)) = det J 6= 0. This allows us to use Theorem
4.5.

5. That is, there is W ⊂ Ω such that G|W : W → G(W ) admits a smooth inverse
H.

6. Also note that
F̄ (x) = (F̄ 1(x), ..., F̄ n(x)) = π ◦ G(x).

This suggests that we should try for a chart the map G ◦ ϕ!

114



Proof of the submersion part III

7. Let us write this all down. Denote U1 := ϕ−1(W ) and Ω1 := G(W ). Define
ϕ1 : U1 → Ω1 as ϕ1 := G ◦ϕ|U1

. I claim that the following diagram commutes:

Ω1

ϕ−1
1- U1

Θ

π
?

ψ−1
- V.

F |U1?

If this is true, we are done, as U1 and V will provide the answer.

8. To prove this final claim, compute:

F ◦ ϕ−1
1 = F ◦ ϕ−1 ◦ G−1 = ψ−1 ◦ F̄ ◦H = ψ−1 ◦ π ◦ G ◦H = ψ−1 ◦ π.

That ends the submersion part.
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Proof of the immersion part I

0. The proof is roughly the same but will not be presented in class.

1. Fast forward to the following situation:

U
ϕ

∼
- Ω

V

F
? ∼

ψ
- Θ.

F̄
?

The map F̄ = ψ ◦ F ◦ ϕ−1 now has the property that

J ij =
∂F̄ i

∂x j
(ϕ(p)), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

has rank m (m ≤ n). Here (x1, ..., xm) denote coordinates in Ω.

2. Without loss of generality, we can thus assume that the square matrix

J ij =
∂F̄ i

∂x j
(ϕ(p)), 1 ≤ i ≤ m, 1 ≤ j ≤ m

has rank m.
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Proof of the immersion part II

3. Consider the map
G : Ω× Rn−m → Rn,

(x1, ..., xm, y1, ..., yn−m) 7→ (F̄ 1(x), ...F̄m(x), F̄m+1(x) + y1, ..., F̄ n(x) + yn−m).

If we compute its Jacobian matrix it looks like as follows:

∂1F̄
1 ... ∂mF̄ 1 0 0 ... 0

... ... ...

∂1F̄
m ... ∂mF̄m 0 0 ... 0

∂1F̄
m+1 ... ∂mF̄m+1 1 0 ... 0

... ... ...

∂1F̄
n ... ∂mF̄ n 0 0 ... 1


Here ∂i = ∂

∂x i
(only means x-derivatives). If we evaluate this Jacobian at

(ϕ(p), 0), using the block-diagonal property of the determinant we conclude
that dG((ϕ(p), 0)) is invertible.

4. Note also that G ◦ ι : Ω→ Rn is in fact equal to F̄ (corresponds to setting y ’s
to zero).

5. By Theorem 4.5 there is a subset W ⊂ Ω× Rn−m on which G is invertible,
with inverse H : G(W )→ W . By shrinking W in the y -direction we can
assume that G(W ) ⊂ Θ.
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Proof of the immersion part III

6. Let Ω1 := ι−1(W ) ⊂ Ω and U1 := ϕ−1(Ω1). Denote also ϕ1 := ϕ|U1
. Then

ϕ : U1
∼→ Ω1 is a chart containing p.

7. Also let Θ1 := W , V1 := ψ−1(G(W )) and ψ1 : V1 → Θ1 by
ψ1 = H ◦ ψ : V1 → G(W )→ W = Θ1. I claim that the following diagram
commutes:

Ω1

ϕ−1
1- U1

Θ1

ι
?

ψ−1
1

- V1.

F |U1?

If this is true, we are done, as U1 and V1 will be the answer.

8. Compute:
ψ−1

1 ◦ ι = ψ−1 ◦ G ◦ ι = ψ−1 ◦ F̄ = F ◦ ϕ1.

This ends the proof of the theorem. �
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Subsection 2

Submanifolds
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Certain immersions, like Sn ⊂ Rn+1 are special.

Definition 4.8. A smooth map F : S → M is an embedding if it is an immersion
and induces a homeomorphism S ∼= F (S) (we put induced topology on F (S)).

Example 4.9. What is not an embedding?

1. Consider a map F : R→ R2, t 7→ (t2 − 1, t(t2 − 1)). Both functions are
smooth and the differential is

dF (t) = t(2t, 3t2 − 1) 6= 0 for all t ∈ R.

However it has a self-intersection as it parametrieses the curve y2 = x2(x + 1).
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2. Consider a map ]−π/2, 3π/2[→ R2, t 7→ (sin 2t, cos t). Its differential is again
never zero but the image is the same as for its extension [−π/2, 3π/2]→ R2.
There is a particular problem with the topology of the image around (0, 0):

−2 −1 0 1 2
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−1

0

1

2
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Embedded submanifolds

Definition 4.10. Let M be a smooth n-manifold and S a subset and k ≤ n. We
say that S is a (embedded) k-submanifold if for each point x ∈ S

1. There exists a chart ϕ : (U,C∞U )
∼→ (Ω, C∞Ω ), such that

2. one has ϕ(S ∩ U) = Ω ∩ Rk , where we view Rk ⊂ Rn via the inclusion
ι : (x1, ..., xk) 7→ (x1, ...., xk , 0, ..., 0).

Such a chart (U,ϕ) is sometimes called a slice chart.

Lemma 4.11. Let F : K → M be an immersion that induces a homeomorphism
K
∼→ F (K). Then the set S = F (K) is a k-submanifold, where k = dimK.

Proof. By canonical immersion theorem, for each x ∈ K there is a diagram

K � ⊃ U
ϕ

∼
- Ω

M

F
?
� ⊃ V

F
? ∼

ψ
- Θ.

ι
?

As before, (U,ϕ) is a chart in K containing x , (V, ψ) is a chart in M and
ι(x1, ..., xk) = (x1, ..., xk , 0, ..., 0).
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1. Denote U := F (U) ⊂ S. Note that for y ∈ U , we have ψ(y) ∈ im ι, since
y = F (z) for some z ∈ U and ι(ϕ(z)) = ψ(F (z)).

2. The set U is contained in V by the diagram above. It is also open in S since
F : K → S is a homeomorphism. This means that there exists W ∈ Op(M)

such that U = W ∩ S.
3. Take V := W ∩ V . The pair (V, ψ|V) satisfies the following properties:

3.1 It is a chart: we can write ψ : V ∼→ Θ1 ⊂ Rn.
3.2 The intersection S ∩ V is equal to U : S ∩ V = S ∩ (W ∩ V ) = U ∩ V = U .
3.3 The chart map ψ sends U onto the subset

{(x1, ..., xn) ∈ Θ1 | xk+1 = ... = xn = 0}

This finishes the proof for (V, ψ) can be found for any point F (x) of S. �

Remark 4.12. The slice charts are not the ones obviously existing. Indeed, think
of the spheres as embedded in Rn!
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Slice charts give manifold structure

Definition 4.13. LetM be a smooth manifold, and A ⊂ M any subset. We say
that f : A→ R locally smoothly extends to M if for each x ∈ A there exists
Ux ∈ Op(M), x ∈ Ux , and g ∈ C∞M (Ux ) such that g|A∩Ux = f |A∩Ux .

Lemma 4.14. Let ι : Rk ↪→ Rn denote the first k coordinates inclusion. Let
f : Rk → R. Then the following are equivalent:

1. f is smooth on Rk ,
2. f locally smoothly extends to Rn.

Proof. If f is smooth then so is f̃ : (x1, ...xn) 7→ f (x1, ..., xk). But f̃ |Rk = f .

Conversely, if V ⊂ Rk , V = Rk ∩ U for some open U ⊂ Rn, and g : U → R is a
smooth extension of f |V , then f |V = g ◦ ι|V . We conclude since ι is smooth. �
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Theorem 4.15. (Slice criterion for submanifolds) Let M be a smooth n-manifold
and S a k-submanifold in the sense of Definition 4.10. Then

1. There a manifold structure on S making it into a k-manifold.

2. This structure is uniquely determined by the requirements the topology on S
is induced and that i : (S, C∞S ) ↪→ (M,C∞M ) is a smooth embedding.

3. Let F : N → M be any smooth map such that imF ⊂ S. Then the map F read
as F : N → S is also smooth.

Proof. Short version: Put induced topology on S. Let U ∈ Op(S). Define

C∞S (U) := {f : U → R | f locally smoothly extends to M}.

The verification below explains that with the help of slice charts and observations
like that of Lemma 4.14, (S, C∞S ) is a smooth manifold.

For F as in 3. we note that f ∈ C∞S (S) implies that f ◦ F can be written locally as
g ◦ F for some g ∈ C∞M (U). The sheaf property helps to conclude that
F ∗(f ) : N → R is smooth.
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Longer and tedious version, optional reading. Let us prove the first point.

1. Let A ⊂ S any subset. We say that f : A→ S locally extends to M if for each
x ∈ A there exists Ux ∈ Op(M) and g ∈ C∞M (Ux ) such that g|A∩Ux = f |A∩Ux .

2. We consider S with induced topology. We will define the smooth structure
sheaf by setting, for U ∈ Op(S),

C∞S (U) := {f : U → R | f locally extends to M}.

3. Since the property of local extension is defined point-by-point, C∞S is a
presheaf on S.

4. Let U = ∪Ui in S, and consider f : U → R that has the local extension
property when restricted to all Ui . Since each x ∈ U belongs to some Ui , we
use the local extension there and conclude that f locally extends to M
everywhere on U .

5. Let U ∈ OpS and f1, f2 ∈ C∞S (U). Then if g1, g2 extend f1, f2, we have that
λg1 + µg2 extends λf1 + µf2, and g1 · g2 extends f1 · f2.

6. We conclude that (S, C∞S ) is an R-space.
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7. Now, let ϕ : U
∼→ Ω be a slice chart of M (that has nonempty intersection

with S). Without loss of generality we suppose that Ω is an open ball centred
at 0. Denote U = U ∩ S. Then the slice condition implies that Θ := ϕ(U) is a
subset of Rk ∩Ω. The restrictions of continuous maps are continuous, so

ϕ|U : U � Θ : ϕ−1|Θ

is a homeomorphism. Denote ψ := ϕ|U .
8. Let V ∈ Op(Θ) and f : V → R. Denote Assume that f is smooth on V .

Defining f̃ (x1, ..., xn) = f (x1, ..., xk) trivially extends f to a smooth function f̃
defined on an open subset Ṽ of Ω such that Ṽ ∩ Rk = V . Thus
f ◦ ψ : ψ−1(V )→ R can be extended to f̃ ◦ ϕ : ϕ−1(Ṽ )→ R. This means that
ψ∗(f ) ∈ C∞S (ψ−1(V )).

9. Let V ∈ Op(Θ) and f : V → R. Assume that ψ∗(f ) ∈ C∞S (ψ−1(V )). Precisely,
this means that there exists a cover ∪Vi of ψ−1(V ) with each Vi = S ∩ Ui such
that ψ∗(f )|Vi admits a smooth extension gi : Ui → R. We can assume that
each Ui ⊂ U, if not, intersect. Then the function f has the property that it is
extendable (by a smooth gi ◦ ϕ−1) in a neighbourhood of each point of V .
This means that f is smooth.

The first point is proven. Using the slice charts we easily see that for p ∈ S, TpS is
identified with a k-subspace of TpM (the map ι is inverse to π), meaning that the
inclusion S ↪→ M is an immersion.
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Uniqueness:

1. Assume that A is a different function sheaf that makes (S,A) into a smooth
manifold. The requirement that j : S ↪→ M is a smooth embedding tells us
that dimS = k. Let us prove that A = C∞S as constructed above.

2. By canonical immersion theorem, for each x ∈ S there is a diagram

S � ⊃ U
ϕ

∼
- Ω

M

j
?
� ⊃ V

j
? ∼

ψ
- Θ.

ι
?

As before, (U,ϕ) is a chart in S containing x , (V, ψ) is a chart in M and
ι(x1, ..., xk) = (x1, ..., xk , 0, ..., 0).

3. Let f ∈ A(U) meaning that f ◦ ϕ−1 is smooth on Ω. As in Lemma 4.14, we
can observe that there exists cover ∩Ωi = Ω such that f ◦ ϕ−1 is locally
extensible by smooth gi : Θi → R, with Θi ∈ OpΘ, Θi ∩ ι(Ω) = ιΩi .

4. Since gi ◦ ψ ◦ j = gi ◦ ι ◦ ϕ = f |..., we conclude that on ϕ−1(Ωi ) f is locally
extensible by gi ◦ ψ. This means that A(U) ⊂ C∞S (U).

5. Same verification can be done for any subset of U. Sheaf property can then be
used to conclude that A(U) ⊂ C∞S (U) for any U ∈ Op(S).
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6. On the other hand, let f ∈ C∞S (U). On some V ⊂ U, we can extend f to
g : Ṽ → R, smooth on an open Ṽ ⊂ M. By assumption j∗(g) is in A(j−1Ṽ ).
But j−1Ṽ = Ṽ ∩ S = V and j∗(g) = f |V . Thus f |V ∈ A(V ). We then use the
sheaf property of A to conclude that f ∈ A(U).

The last point is proven the same way as in the short version. �

Corollary 4.16. Let F : K → M be a smooth embedding. Then F (K) is a smooth
manifold of dimension dimK and F : K → F (K) is a diffeomorphism.

Proof. Theorem 4.15, Lemma 4.11 and Corollary 4.6 do most of the work. It is
useful to comment on the pushforward maps. For p ∈ K, there is the following
commutative diagram of pushforwards.

TpK - TF (p)M

TF (p)F (K)

-
-

.

The map TpK → TF (p)M is injective (of rank dimK), and so is the map
TF (p)F (K)→ TF (p)M. This can only happen if TpK → TF (p)F (K) is an
isomorphism. �
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Submanifolds as level sets

The reason we bothered with such an uncomfortable notion is the following
theorem, very powerful for constructing examples.

Theorem 4.17. Let F : M → N be a smooth map. Let q ∈ N be such that for
each p ∈ F−1(q), the map F∗ : TpM → TqN is surjective (in other words, F is a
submersion on F−1(q)). Then

1. The set S = F−1(q) is a k-submanifold, where k = dimM − dimN,

2. The tangent space TpS at p ∈ S is given by ker F∗.

This is extremely strong! For example, consider F : Rn → R, F (x1, ..., xn) =
∑
x2
i .

Then the theorem gives us a smooth manifold structure on Sn−1 = F−1(1) without
constructing any charts! We can further consider systems of equations to get more
complex examples.
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Proof. As usual, go for the canonical submersion theorem at p ∈ S:

M � ⊃ U
ϕ

∼
- Ω

N

F
?
� ⊃ V

F
? ∼

ψ
- Θ

π
?

(p ∈ U, q ∈ V ). We can use translations to ensure that ψ(q) = 0.

Consider U ∩S = U ∩ F−1(q). For p′ ∈ U, the statement p′ ∈ U ∩S is equivalent to
F (p′) = q which in turn is equivalent to ψ(F (p′)) = ψ(q) = 0. Since ψ ◦F = π ◦ϕ,
we have that p′ ∈ U ∩ S is equivalent to ϕ(p′) ∈ π−1(0), or in other words, that

ϕ(U ∩ S) = {(x1, ..., xm) ∈ Ω | x1 = ... = xn = 0}.

Thus U works as a slice chart for S (modulo reshuffling the coordinates), and
Theorem 4.15 implies the first point.

Let j : S → M denote the inclusion (a smooth embedding by Theorem 4.15). Note
that F ◦ j is a constant map valued at q. This means that for any X ∈ TpS, we
have (F ◦ j)∗X(f ) = X(f (q)) = 0. Thus F∗ ◦ j∗ = 0, im j∗ ⊂ ker F∗. The map j∗ is
injective and

dim im j∗ = dim ker F∗ = m − n = dimM − dimN

so we get the result. �
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Subsection 3

Applications
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The toolkit that we developed took a lot of work, but now we can do all sorts of
verifications.

Example 4.18. Recall that GLn(R) is an open set of Rn2 , and hence is an open
submanifold. The function det : GLn(R)→ R∗ is known to be smooth (it can be
written as a polynomial of the matrix coefficients). What about its differential?

If n = 2, we have

M =

(
x1 x2

x3 x4

)
, detM = x1x4 − x3x2

and so d det(M) = dx1 · x4 + x1 · dx4 − dx3 · x2 − x3 · dx2. Here dxi denote the
linear forms in R4 dual to the canonical basis of R4, dxi (ej ) = δi j . In other words

d det(M)(v1, v2, v3, v4) = v1x4 + x1v4 − v2x3 − x2v3.

It might be useful to mention that there is a result, called Jacobi’s formula:

d detM = tr(adj(M) · dM), dM =

(
dx1 dx2

dx3 dx4

)
and adj(M) is the adjunct matrix. This result is valid for all n.
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Let us verify it for n = 2. For M =

(
x1 x2

x3 x4

)
, we have adj(M) =

(
x4 −x2

−x3 x1

)
and hence

adj(M) · dM =

(
x4 −x2

−x3 x1

)
·
(
dx1 dx2

dx3 dx4

)

=

(
x4 · dx1 − x2 · dx3 ...

... −x3 · dx2 + x1 · dx4

)
,

and so its trace is x4 · dx1 − x2 · dx3 − x3 · dx2 + x1 · dx4 = d det(M).

In any case, if d det(M) = 0, this can only happen if x1 = x2 = x3 = x4 = 0. This
clearly cannot happen on SL2(R) = det−1(1).

Thus det is a submersion when restricted to SL2(R), and so SL2(R) is a
22 − 1-submanifold of GL2(R), and the uniqueness of the smooth structure
(Theorem 4.15) means that the level set smooth structure of Theorem 4.17
coincides with the smooth structure constructed by hand in TD.

The Jacobi formula allows to make the same observations for arbitrary n, meaning
that SLn(R) is a (closed) smooth n2 − 1-submanifold of GLn(R).
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Example 4.19. The subgroup O2(R) ⊂ GL2(R) consists of all matrices M such

that tMM = I2. If we write M =

(
x1 x2

x3 x4

)
as before, then the orthogonality

equation becomes:(
x1 x3

x2 x4

)
·
(
x1 x2

x3 x4

)
=

(
x2

1 + x2
3 x1x2 + x3x4

x1x2 + x3x4 x2
2 + x2

4

)
=

(
1 0

0 1

)
.

Thus O2(R) = F−1(0), where F : Mat2(R)→ R3 works as

F

((
x1 x3

x2 x4

))
= (x2

1 + x2
3 − 1, x2

2 + x2
4 − 1, x1x2 + x3x4).

As we now from last year, a matrix M ∈ O2(R) is of the form M =

(
x1 x2

∓x2 ±x1

)
.

Compute the Jacobi matrix of F for such matrices:

J(F )(M) =

2x1 0 ∓2x2 0

0 2x2 0 ±2x1

x2 x1 ±x1 ∓x2

 .
Since x2

1 + x2
2 = 1, we see that the rank of J(F )(M) is 3. Thus F is a submersion

on O2(R) meaning that the latter is a smooth submanifold of dimension 4− 3 = 1.
It has two connected compoonents, one of them being SO2(R). This is an open
(and closed) subset of O2(R) and hence is also a smooth 1-manifold.
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Of course, we expect SO2(R) to be diffeomorphic to S1 as a smooth manifold. Let
us make it precise. Consider the map D : R2 → Mat2(R) ∼= R4, defined as

D0(x, y) =

(
x y

−y x

)
.

This map is obviously smooth of constant rank 2. Its restriction to i : S1 ⊂ R2 is
the map D = D0 ◦ i , smooth of constant rank 1 (an immersion). It maps
bijectively onto SO2(R) as we know from MAA201. For p ∈ S1, in the diagram

TpS1 - TF (p) Mat2(R)

TD(p) SO2

-
-

.

we have that both TpS1 → TF (p) Mat2(R) and TD(p) SO2 → TF (p) Mat2(R) are of
constant rank 1, so the map D∗ : TpS1 → TD(p) SO2 cannot be zero. Thus D is a
bijection and D∗ is an isomorphism at each point, so D is a diffeomorphism.
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Example 4.20. (All tori are the same) The product S1 × S1 can be viewed as a
smooth submanifold in R2 × R2 defined as F−1(0, 0) for

F : R4 → R2 F (x, y , z, t) = (x2 + y2 − 1, z2 + t2 − 1).

Since F is a submersion on F−1(0, 0), the set S1 × S1 gets the natural submanifold
structure. It is compatible with all the usual maps and gives in fact the same
product smooth structure as studied in TD.

We consider the map

P : R2 → R4, P (x, y) = (cos(2πx), sin(2πx), cos(2πy), sin(2πy)).

It is evidently smooth with image S1 × S1, so we can view it as a smooth map of
manifolds R2 → S1 × S1. It also respects the torus equivalence relation. The
induced map

P̃ : T→ S1 × S1, P = P̃ ◦ q

is also smooth since q∗(P̃ ∗)(f ) = P ∗(f ), so f ∈ C∞(S1 × S1) implies
(P̃ ∗)(f ) ∈ C∞(T). The map P̃ remains a bijection. On the level of tangent spaces,
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the following commutes

TpR2 - TP (p)R4

Tq(p)T

∼
?

P̃∗
- TP (p)S1 × S1.

6

The maps TpR2 → TP (p)R4 and TP (p)S1 × S1 → TP (p)R4 are of constant rank 2.

For this reason P̃∗ : Tq(p)T→ TP (p)S1 × S1 can be only of rank 2, and so again P̃ is
bijective of maximal rank, hence a diffeomorphism.

Exact same checks are possible for

G(x, y) = ((2 + cos 2πx) cos 2πy, (2 + cos 2πx) sin 2πy, sin 2πx)

to establish a diffeomorphism between T and G(R2). We leave it as an exercise.
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Section 5

Vector fields
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We saw the expressions
∑
V i ∂

∂x i
|p corresponding to p-derivations of C∞(Ω).

It also makes sense to consider p 7→
∑
V i (p) ∂

∂x i

∣∣
p
, where all V i are now smooth

functions on Ω. Such a formula can take a smooth function f and produce a new
function, f 7→ X(f ), X(f )(p) = X i∂i f (p), again smooth. The operator X is called
a vector field.

We would like to properly define it in the context of manifolds. One approach is to
treat X as a family p 7→ Xp ∈ TpM that “varies smoothly” (need to formalise what
it means). This is advantageous because then it is easy how to restrict vector
fields.

Another approach would be to define X as a map C∞(M)→ C∞(M) that is
R-linear and satisfies Leibniz rule. This is very algebraic, but it is not clear how to
restrict such expressions.

We will do both, and compare.
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Subsection 1

Vector fields as families
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Definition 5.1. Let (M,C∞M ) be a smooth manifold. A (smooth) vector field X
on U ∈ OpM is an assignment, to each p ∈ U, of Xp ∈ TpM, such that the
following is satisfied. For each V ∈ OpU and f ∈ C∞M (V ), the function

X(f ) : p 7→ Xp(f )

is smooth: X(f ) ∈ C∞M (V ). We denote the set of all vector fields on U as TM(U).

We will slightly redefine the notion of assignment p 7→ Xp in a couple of moments.

Lemma 5.2. The set TM(U) has a natural vector space structure given by

(λX + µY )p := λXp + µYp.

Moreover, if X ∈ TM(U) amd g ∈ C∞M (U), then g ·X defined as (gX)p = g(p)Xp is
again in TM(U). In algebraic terms, this means that TM(U) is a C∞M (U)-module.

Proof. Standard check using the fact that linear combinations and products of
smooth functions are smooth. �
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Example 5.3. Take Ω ∈ OpRn. Then for each p ∈ Ω, there is a basis of TpΩ

given by {∂/∂x i |p}. The family

∂i : p 7→
∂

∂x i

∣∣∣∣
p

is a smooth vector field: indeed, for any U ⊂ Ω and f ∈ C∞(U) the function
p 7→ ∂i f (p) is smooth. Previous lemma guarantees us that any sum X =

∑
X i∂i

with X i smooth on Ω provides a vector field.

Conversely, let X be a smooth vector field on Ω as defined above. Then we can
still write X =

∑
X i∂i (because ∂i |p is basis at each p), but for the moment we do

not know if p 7→ X i (p) is smooth.

This is almost immediate: if we denote x i : p 7→ x i (p) the i-th coordinate function,
then X(x i ) = X i , and it has to be smooth on Ω by definition.
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Tangent sheaf

Our definition of vector fields is adapted to restrictions: if X ∈ TM(U) and V ⊂ U,
then simply restricting to points in V defines X|V ∈ TM(V ). This suggests that
TM = {TM(U)}U could be a (pre)sheaf. To make it precise, denote

TM :=
⊔
p∈M

TpM = {(p, v) | v ∈ TpM}.

This set is called the tangent bundle of M. It can be made into a smooth
manifold, but we ignore this for now.

There is a function π : TM → M that sends (p, v) to p. Each smooth vector field
can be viewed as a section of π. That is, if X ∈ TM(U) then the map that we also
denote

X : U → TM, p 7→ (p,Xp)

evidently satisfies π ◦ X = idU . In fact, defining a vector field X as a section of π
over U is a more rigorous way to give meaning to “a collection of tangent vectors
Xp for each p ∈ U”. We thus can view TM(U) as a subset of F(U, TM).
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Proposition 5.4. The collection U 7→ TM(U) forms a sheaf TM of functions to
TM, called the tangent sheaf of M.

Proof. If X ∈ TM(U), this means that as a map X : U → TM it satisfies
π ◦ X = idU . For V ⊂ U, we then immediately have π ◦ X|V = idV , meaning that
X(p) can be still written as (p,Xp).

Moreover the function X(f )(p) := Xp(f ) is smooth for any smooth function f
defined on an open subset of V (and hence, of U). Thus the restriction X|V
remains a smooth vector field, meaning that TM is a presheaf.

Assume now that U = ∪iUi . Let X : U → TM be any map, and we know that
X|Ui ∈ TM(Ui ). This already implies that for each p ∈ U, the composition
π ◦ X = idU as this is a point-by-point equality that can be verified on each Ui .
Hence X can be written as a map p 7→ (p,Xp).

Now, if V ⊂ U and f ∈ C∞(V ), then X(f )(p) = Xp(f ) satisfies the property of
being a smooth function on each Ui ∩ V . Since smooth functions form a sheaf, it
means that X(f ) is smooth on V = ∪V ∩Ui . Thus X is a smooth vector field on U.
�
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We apply the sheaf property of TM to formulate the expected criterion of
smoothness in terms of local coordinates. Let (V, ϕ) be a smooth chart. Denote,
for W ∈ Op V ,

eϕi : f ∈ C∞M (W ) 7→
∂(f ◦ ϕ−1)

∂x i
◦ ϕ.

Thanks to Example 5.3 this assignment gives a smooth function on W . This is a
collection of tangent vectors: (eϕi )p coincides with ∂i |p in the sense of Notation
3.33:

eϕi (f )(p) =
∂

∂x i

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1) = ϕ−1
∗

∂

∂x i

∣∣∣∣
ϕ(p)

f .

Corollary 5.5. Let X : p 7→ Xp be a family of tangent vectors for p ∈ U. The
following are equivalent:

1. X ∈ TM(U),

2. For each point p ∈ U there exists a chart (V, ϕ), p ∈ V ⊂ U, such that

X =
∑

X ieϕi ,

where each X i ∈ C∞M (V ) and eϕi are defined as above.
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Proof. Of course, for each p ∈ U there is a chart V that contains it and is
contained in U: often we can find a bigger chart in M and then intersect it with U.
For a chart (V, ϕ), write ϕ(p) = (x1

ϕ(p), ..., xnϕ(p)) so that each x iϕ ∈ C∞M (V ):
evidently, x iϕ ◦ ϕ−1 is simply the i-th coordinate projection on Ω = ϕ(V ).

1.⇒ 2. Let X ∈ TM(U). Let (V, ϕ) be any chart around p inside U. Then eϕ1 , ..., e
ϕ
n

belong to TM(V ) due to our previous considerations, and at each point q ∈ V ,
the q-derivations (eϕ1 )q , ..., (eϕn )q form a basis of TqM.
Thus we can write X =

∑
X ieϕi . The functions X i : V → R are smooth: it

suffices to compute X(x i ) on the smooth coordinate functions x iϕ : V → R.
2.⇒ 1. Let X be a family of tangent vectors at points of U. Let (V, ϕ) be the chart

around p inside U for which X =
∑
X ieϕi . Since e

ϕ
i are in TM(V ) and X i are

smooth on V , Lemma 5.2 implies that
∑
X ieϕi is in TM(V ). We then cover U

by all such V and use the sheaf property of TM to conclude that X ∈ TM(U).
�

Remark 5.6. Note that we (somewhat subtly, as usual with the sheaf approach)
avoided the question of coordinate transformations. In practice, in order to
construct X ∈ TM(M), one often covers M by charts Ui , constructs X|Ui ∈ TM(Ui )

and then verifies that (X|Ui )|Uj = (X|Uj )|Ui on all Ui ∩ Uj . This usually requires to
perform coordinate transformations by the means of functions ψ ◦ ϕ−1.
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What is it with the TM?

In our interpretation of vector fields as sheaves of functions, we passed by
TM = tpTpM, a set. In fact, the following result is true:

Proposition 5.7. There exists unique structure on TM making it into a smooth
manifold such that

1. The projection π : TM → M is a smooth map,

2. X ∈ TM(U) if and only if the section M → TM, p 7→ (p,Xp) is a smooth map.

This smooth manifold is called the tangent bundle of M.

Due to time limits, this will be an exercise for TD (that will or will not be
explained). All books on differential geometry explain this, and of course, various
manifolds appear in practice as tangent bundles to some other manifolds.

From an algebraic perspective, the vector fields sheaf TM is however an object tied
more fundamentally to C∞M , something that we are about to explain.
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Subsection 2

Vector fields as derivations
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Definition 5.8. A derivation of an R-algebra A is an R-linear map D : A→ A

that satisfies the Leibniz rule: D(a · b) = D(a) · b + a ·D(b) for all a, b ∈ A.
We denote Der(A) the set of derivations of A. This set is naturally an R-vector
space with operations defined value-wise: (λD + µD′)(a) := λD(a) + µD′(a).

Let X ∈ TM(U). Then X naturally defines a derivation of C∞M (U). Indeed,
f 7→ X(f ) is R-linear in f as this is true for all p 7→ Xp(f ). Moreover, for every p,

X(f · g)(p) = Xp(f · g) = Xp(f ) · g(p) + f (p) · Xp(g)

and thus we can write X(f · g)X(f ) · g + f · X(g). There is thus a natural map
TM(U)→ Der(C∞M (U)).

Proposition 5.9. The natural map TM(U)→ Der(C∞M (U)) constructed above is
an isomorphism.

The vector fields seem so similar to derivations it is hard to understand what is to
prove here! The subtlety is that derivations only know about functions on U and
not on its subsets.
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Proof.

1. Without loss of generality, we can put U = M. For the time being, let us
introduce some notation to distinguish between vector fields and derivations.
If X is a vector field then XD : C∞(M)→ C∞(M) is its associated derivation,
given by action of X.

2. For each p ∈ M there is a natural map p∗ : Der(C∞M )→ Derp(C∞M ,R) that acts
as follows.

D 7→ p∗D, p∗D(f ) := D(f )(p).

This map sends derivations to derivations since functional Leibniz rule gives
rise to pointwise Leibniz rule. Note that D = 0 iff for all p ∈ M, p∗D = 0.

3. Let X such that XD = 0. However, p∗XD(f ) = X(f )(p) ≡ Xp(f ) and so
p∗XD = Xp. Thus Xp = 0 for each p, meaning that X = 0. Our map
TM(M)→ Der(C∞M (M)) is thus injective.
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4. Let D ∈ Der(C∞(M)). We want to construct a vector field that produces it.
For this, we consider the collection Xp = p∗D. We need to test if for each
f ∈ C∞(V ), the function p 7→ Xp(f ) remains smooth on V .

5. For this, we use two points from the proof of Proposition 3.29:
5.1 For each p ∈ V , there exists a global function g ∈ C∞(M) that coincides with f

on some W ⊂ V that contains p,
5.2 If f |W = g|W then for each q ∈ W and each Y ∈ TqW , we have Y (f ) = Y (g).
5.3 Result of these points being that TqW ∼= TqV ∼= TqM canonically.

Consider the function q 7→ Xq(f ) for q ∈ W . Because of the above remarks, it
is the same as the function q 7→ Xq(g) for q ∈ W . However, the latter is
simply the restriction D(g)|W ∈ C∞(W ). We cover V by varying p and get
that p 7→ Xp(f ) is smooth on V .

6. The proof is over since XD(f )(p) = Xp(f ) = p∗D(f ) = D(f )(p) for all p ∈ M.
�

This proposition can be read the other way around. We could have simply defined
the vector fields as derivations. Then we verify that U 7→ Der(C∞M (U)) is in fact a
sheaf (in a more abstract sense than a sheaf of functions). This way one does not
even need to introduce tangent spaces! In fact, they are subtly hidden inside the
structure of the sheaf of vector fields.
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Example 5.10. Recall the smooth map F : R→ S1, α 7→ (cos(2πα), sin(2πα)).
There is a global vector field d

dα
∈ TR(R).

The map F ∗ : C∞(S1)→ C∞(R) is a bijection onto the R-subalgebra C∞per (R) of
functions f such that f (α+ n) = f (α). This can be proven in a way similar to the
torus case: we can indeed verify that the quotient smooth structure on R/Z is
diffeomorphic to S1.

Using this argument one can check that (F ∗)−1 : C∞per (R)→ C∞(S1) acts as
follows:

(F ∗)−1(f )(p) = f (α) where α satisfies p = (cos 2πα, sin 2πα).

Let us construct X ∈ T 1
S (S1). Note that for f ∈ C∞(S1), the derivative

d(f ◦ F )/dα also belongs to C∞per (R). Let us write

X(f ) := (F ∗)−1

(
d(F ∗(f ))

dα

)
.

This is smooth on S1. Moreover,

dα(F ∗(f · g)) = F ∗(f ) · dαF ∗(g) + dαF
∗(f ) · F ∗(g).
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Since F ∗ preserves the R-algebra structure, so does (F ∗)−1 : C∞per (R)→ C∞(S1).
We get that

(F ∗)−1dα(F ∗(f · g)) = f · (F ∗)−1(dαF
∗(g)) + (F ∗)−1(dαF

∗(f )) · g

so X is indeed a smooth vector field on S1.

If p ∈ S1 is such that p = F (α0) = (cos(2πα0), sin(2πα0)), then

Xp = F∗

(
d

dα

∣∣∣∣
α0

)
.

If we denote by i : S1 → R2 the inclusion map, then we can compute slightly
further to see that

i∗Xp = 2πx
∂

∂y

∣∣∣∣
p

− 2πy
∂

∂x

∣∣∣∣
p

.

This is orthogonal to the radial vector and runs around counterclockwise with
constant speed (as expected).
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Subsection 3

Lie bracket
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The derivation perspective has some interesting consequences.

Lemma 5.11. Let D1, D2 be two derivations of an R-algebra A. Then

[D1, D2] := D1 ◦D2 −D2 ◦D1

(the commutator) is again a derivation.

Proof. The R-linearity being obvious (compositions of linear maps), for a, b ∈ A,
we compute

[D1, D2](ab) = D1(D2(ab))−D2(D1(ab))

= D1(aD2(b) +D2(a)b)−D2(aD1(b) +D1(a)b)

= D1(a)D2(b) + aD1(D2(b)) +D1(D2(a))b+D2(a)D1(b)

−D2(a)D1(b)− aD2(D1(b))−D2(D1(a))b−D1(a)D2(b)

= (D1(D2(a))−D2(D1(a)) b + a (D1(D2(b))−D2(D1(b)))

= ([D1, D2](a)) (b) + a ([D1, D2](b)) .

The bracket thus satisfies the Leibniz rule. �
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Corollary 5.12. Let (M,C∞M ) be a smooth manifold, U ∈ OpM and
X, Y ∈ TM(U). Then the assignment

f 7→ X(Y (f ))− Y (X(f ))

defines a vector field [X, Y ] ∈ TM(U) and called the Lie bracket of X, Y . �

Lemma 5.13. Let X, Y ∈ TM(U) and V ⊂ U open. Then for f ∈ C∞M (V ),

[X, Y ]|V (f ) = [X|V , Y |V ](f ).

Proof. Extend f by f̃ ∈ C∞M (U) that agrees with f on some W 3 p. Then

[X, Y ]|V (f )(p) = [X, Y ](f̃ )(p) = X(Y (f̃ ))(p)− Y (X(f̃ ))(p)

= X(Ỹ |V (f ))(p)− Y (X̃|V (f ))(p)

= X|V (Y |V (f ))(p)− Y |V (X|V (f ))(p).

In this computation, we have used the following observation: if f̃ is an U-extension
of f to that agrees with f on W , then X(f̃ ) : p 7→ Xp(f̃ ) is an U-extension of
X|V (f ) : p 7→ Xp(f ) that agrees with X|V (f ) on W . �
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Example 5.14. At a point p ∈ U, we have [X, Y ](f )(p) = Xp(Y (f ))− Yp(X(f ));
please note that writing Xp(Yp(f ))− Yp(Xp(f )) is not the same! If we interpret
Xp(f ) = X(f )(p) as a constant function, then the latter expression of the previous
sentence is always zero. However, even on Rn this is not always the case.

Consider two vector fields X =
∑
X i ∂

∂x i
and Y =

∑
Y i ∂

∂x i
on Ω ∈ OpRn. Then a

little exercise shows that the Lie bracket is

[X, Y ] =
∑
i ,j

(
X j
∂Y i

∂x j
− Y j

∂X i

∂x j

)
∂

∂x i
.

Lemma 5.15. The Lie bracket [, ] : TM(U)× TM(U)→ TM(U) is a bilinear
antisymmetric map. For X, Y, Z ∈ TM(U), the Lie bracket satisfies the Jacobi
identity:

[[X, Y ], Z] + [Z, [X, Y ]] + [Y, [Z,X]] = 0.

Proof. Derivations are in particular linear maps. The same facts are true for
commutators of linear maps. �
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Lie algebra of vector fields

Definition 5.16. A Lie algebra g is an R-vector space together with a bilinear
antisymmetric map [ , ] : g× g→ g (called Lie bracket) that satisfies the Jacobi
identity: for each a, b, c ∈ g, we have

[[a, b], c] + [c, [a, b]] + [b, [c, a]] = 0.

Given two lie algebras (g, [ , ]g), (h, [ , ]h) A Lie algebra homomorphism is an
R-linear map f : g→ h that preserves the brackets: for any a, b ∈ g, we have

f ([a, b]g) = [f (a), f (b)]h.

All our observations can now be summarised as follows.

Corollary 5.17. For each U ∈ OpM, the pair (TM(U), [ , ]) is a Lie algebra, and
for each V ∈ OpU, the restriction maps TM(U)→ TM(V ) are Lie algebra
homomorphisms. �

This, together with the sheaf property of TM , allows to compute Lie brackets
locally. It would be nice to understand one more thing: can we actually compute
them by passing to charts, without worrying that the chart diffeomorphisms ϕ get
in the way?
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Pushforwards of vector fields

Contrary to tangent vectors, pushing forward vector fields is not obvious. For
example, there is no canonical way to extend a vector field from U ∈ OpM to M.

Let F : M → N be a smooth map and consider X ∈ TM(M) = Der(C∞(M)). We
can consider something like F ∗ ◦ X : C∞(M)→ C∞(M)→ C∞(N), but it will not
be a vector field on N:

C∞(M)
X- C∞(M)

C∞(N)

F ∗6

?

- C∞(N).

F ∗6

Definition 5.18. Let F : M → N be a smooth map, X ∈ T (M), Y ∈ T (N). We
say that X and Y are F -related, if for each p ∈ M, one has F∗(p)Xp = YF (p), where
F∗(p) : TpM → TF (p)N is the pushforward at p.

Example 5.19. We saw in Example 5.10 that there is a vector field on S1 that is
related to x∂y − y∂x via the inclusion map.
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If F : M → N is a diffeomorphism, then the situation simplifies enormously.

Proposition 5.20. Let F : M
∼→ N be a diffeomorphism, with inverse G. For

X ∈ T (M), define F∗X := G∗ ◦ X ◦ F ∗ : C∞(N)→ C∞(N). Then

1. F∗X is a vector field on N that is F -related to X.

2. For X, Y ∈ T (M), one has F∗[X, Y ] = [F∗X, F∗Y ].

Proof. To check 1., we do the derivation test. As usual, note that
F ∗(f g) = F ∗(f )F ∗(g). Thus

X(F ∗(f g)) = X(F ∗(f )) · F ∗(g) + F ∗(f ) · X(F ∗(g)).

It remains to apply G∗ (which also respects multiplication) and use the fact that
G∗F ∗ = (FG)∗ = id:

G∗(X(F ∗(f g))) = G∗(X(F ∗(f ))) · g + f · G∗(X(F ∗(g))).

Thus F∗X is a vector field. Note that for q = F (p),

G∗(X(F ∗(f )))(q) = X(F ∗(f ))(p) = Xp(F ∗(f )) = (F∗(p)Xp)(f )

thus the F -relation is in order.
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To prove 2., simply note that

F∗X ◦ F∗Y = (G∗ ◦ X ◦ F ∗) ◦ (G∗ ◦ Y ◦ F ∗) = G∗ ◦ X ◦ Y ◦ F ∗

and we can write the same for F∗Y ◦ F∗X. Thus their difference is

F∗X ◦ F∗Y − F∗Y ◦ F∗X = G∗ ◦ (X ◦ Y − Y ◦ X) ◦ F ∗

and that proves the proposition. �

Consequently, to compute a Lie bracket [X, Y ], we can restrict it to a chart U, and
then use the diffeomorphism ϕ : U

∼→ Ω to do local coordinate computations.
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The Lie bracket is quite robust even if F is not a diffeomorphism:

Proposition 5.21. Let F : M → N be a smooth map. Assume that
X1, X2 ∈ T (M) are F -related to Y1, Y2 ∈ T (N). Then [X1, X2] is F -related to
[Y1, Y2].

Proof. Exercise. It is useful to first prove the following characterisation of
F -relation: X is F -related to Y iff for all V ∈ OpN and f ∈ C∞N (V ), one has
X(F ∗(f )) = F ∗(Y (f )) (here we treat X, Y as vector fields in the sense of our
original definition). �

Finally, the following is a nice exercise on slice charts:

Exercise 5.22. Let M be a smooth manifold and S an embedded submanifold.
Denote i : S → M the inclusion map. Let X ∈ TM(M) be such that for all p ∈ S,
one has Xp ∈ i∗(TpS) ⊂ TpM. Then there exists a vector field on S, denoted X|S
that is i-related to X.

The implication of these two statements may seem non-obvious: Lie brackets do
not gain “extra directions” when passing from submanifolds to manifolds.
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Subsection 4

Integral curves
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Let I ⊂ R be an open interval, a smooth 1-dimensional manifold. We can consider
smooth maps γ : I → M to any other smooth manifold, and call them curves in M.
We previously defined, for t0 ∈ I,

γ′(t0) := γ∗(t0)

(
d

dt

∣∣∣∣
t0

)
∈ TpM.

Definition 5.23. Let X ∈ T (M). A smooth map γ : I → M is called an integral
curve of X

γ′(t) = Xγ(t) ∀t ∈ I;

put differently, γ relates the standard vector field dt = d/dt on I to X.
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Example 5.24. Let us decipher what it means for M = Rn. In this case, a
smooth map γ : I → Rn can be written as t 7→ (γ1(t), ..., γn(t)). In this case

γ′(t) =
∑
i

dγ i

dt
(t)

∂

∂x i

∣∣∣∣
γ(t)

and thus for a vector field X =
∑
X i∂i on Rn, the integral curve equation becomes

dγ i

dt
(t) = X i (γ(t)), i = 1, ..., n.

Example 5.25. Very concretely, let us take our old friend X = x∂y − y∂x on R2.
The equations for γ : I → R2 become

.
γ1 = −γ2,

.
γ2 = γ1.

This is of course solvable by circles γ(t) = (R cos(t +α), R sin(t +α)), and we can
put I = R.
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We are thus dealing with systems of ordinary differential equations (ODE) in the
case of Rn, or its open subsets. If we work with general manifolds, charts still
allow such a translation.

Assume that γ : I → M has its image contained in a chart ϕ : U
∼→ Ω. For any

X ∈ TM(U), the equation γ′(t) = Xγ(t) can be then translated in Ω. Simply push
X forward using ϕ. Then we can write our equation as

(ϕ ◦ γ)′(t) = ϕ∗γ
′(t) = ϕ∗Xγ(t).

To polish it slightly more, denote γϕ = ϕ ◦ γ, and Y ϕ = (ϕ−1)∗ ◦X ◦ ϕ∗ the vector
field on Ω obtained by taking pushforward of X along the diffeomorphism ψ. For a
point x ∈ Ω, one has Y ϕx (f ) = Xϕ−1(x)(f ◦ ϕ). The equation becomes

γ′ϕ(t) = Y ϕ
γ̃(t)

.

It is easy to verify that given another chart structure ψ, the solutions of γ′ϕ = Y ϕ

are mapped to γ′ψ = Y ψ. We can then use the machinery of ODE to formulate
results.
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Remark 5.26. Recall from TD that given two smooth manifolds M,N, their
product M × N inherits a smooth structure making it into a product in the sense
of the universal property.

In TD, this structure was constructed by taking atlases: a chart of M × N is given
by (U × V, ϕ× ψ) where (U,ϕ) and (V, ψ) are charts of M and N respectively.

A pair of smooth maps K → M, K → N induces unique smooth map K → M × N.
In particular, fixing a point p ∈ M produces a smooth map N

p×idN−→ M × N.

On the other hand, we can characterise what it means for F : M × N → K to be
smooth. Using chart diffeomorphism, it is sufficient to require that for each chart
(U × V, ϕ× ψ) of M × N, the map

ϕ(U)× ψ(V )
ϕ−1×ψ−1

−→ U × V ⊂ M × N F−→ K

is smooth.
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Existence of integral curves

Theorem 5.27. Let X be a smooth vector field on M. Then for any p0 in M
there exists an open neighbourhood U of p0, an ε > 0 and a smooth map

Γ :]− ε, ε[×U → U ⊂ M

such that for any p ∈ U, the (smooth) map

γp :]− ε, ε[
id×p- ]− ε, ε[×U

Γ- M, γp(t) = Γ(t, p).

is an integral curve of X with γp(0) = p. It is moreover unique in the following
sense: if σ : I → M is another integral curve of X with σ(0) = p, then γp ≡ σ on
I∩]− ε, ε[.

Proof. . Take (U,ϕ) to be a chart containing p0. Translate integral curves into
system of ODE in ϕ(U), and read Arnold [1] to establish the existence of smooth
map Γ̃ :]− ε, ε[×ϕ(U)→ ϕ(U) that satisfies the above conditions. �
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The result is believable but still leaves one wondering if we can actually extend
our solution in t. Even in Rn, it is well-known that this is not always possible.

Example 5.28. Let X be a vector field on R, of the form Xx = −x2∂x . Then
consider an integral curve problem

γ′(t) = Xt , γ(0) = 1.

In other words we are solving the equation .
γ = −γ2 with an initial condition, and

we can try as a solution γ(t) = 1/(t + 1). This formula makes sense on ]− 1,+∞[

and one can apply uniqueness arguments to show that this is the only solution.
But, we cannot extend it past −1 ∈ R.

The following result can be generalised, but is a good illustration.

Theorem 5.29. Let X ∈ T (M) be a smooth vector field on M, with compact
support. That is, there exists K ⊂ M compact such that X ≡ 0 on M \K. Then X
is complete: for each p ∈ M there is an integral curve γ : R→ M,γ(0) = p that is
defined on the whole of R.

In particular, on a compact manifold M this is true for any vector field X.
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Proof.

1. Fix a compact K outside of which X is zero. Then for any p ∈ M \K, an
integral curve of X starting at p simply stays at p, for there X ≡ 0. For the
same reason an integral curve starting in K cannot exit K.

2. We can conclude using Theorem 5.27 that for each p ∈ K, there is an interval
Ip =]− εp, εp[ and an integral curve γp :]− εp, εp[→ Up ∩K of X with
γp(0) = p and certain uniqueness properties.

3. Choose a finite set of Up1 , ..., Upn such that K ⊂ ∪p1,...,pnUp (possible since
compact) and put I = ∩pi ]− εpi , εpi [=:]− ε, ε[.

4. Any q in K belongs to some Upi . Using Theorem 5.27, we conclude again that
there is an integral curve γq : I → K with γ(0) = K.

5. Let p ∈ K and γ : J → K be an integral curve, γ(0) = p, Let c denote the
supremum of J. Denote q = γ(c − ε/2). Then there is an integral curve
γq : I → K.

6. By uniqueness for |t| < ε we have γq(t) = γ(t + c − ε/2). It follows that we
can extend γ by γq on I∪]c − ε/2, c + ε/2[.

7. We continue like that in both directions and find unique integral curve
γ : R→ M with γ(0) = p (the uniqueness follows from verifying locally using
curves γq). �
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Example 5.30. Let us revisit Example 5.28. The line R can be “compactified” to
S1, using the stereographic projection (from (0, 1)): there is a chart
ϕN : UN = S1 \ {(0, 1)} ∼→ R that maps (x, y) to u = x/(1− y). The “southern
pole” stereographic projection ϕS maps (x, y) to v = x/(1 + y) and is defined on
US = S1 \ {(0,−1)}. One computes the transition function on the intersection,
discovering v = 1/u.

Let us now try to put a vector field X on S1. On UN , let us require that
(ϕN)∗X|UN = −u2∂u . Then on UN ∩ US we must have, considering that
dv = −du/u2,

(ϕS)∗X|UN∩US = −1/v2 · (−v2)∂v = ∂v .

Thus we can complete X on the southern chart.

How do we interpret our solution then? We have an integral curve
ϕN ◦ γ(t) = 1/(1 + t) that passes through u = 1 at t = 0. It goes to infinity for
t → −1, but it simply means that it tries to escape the chart!
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In the southern chart, the integral curve equation looks very simple
(ϕS ◦ γ)′(t) = 1. Its solutions are given by functions t 7→ t + a.

If we construct γ : R→ S1 by declaring

γ(t) =

{
ϕ−1
N

(
1

1+t

)
, t ∈]− 1,+∞[

ϕ−1
S (1 + t) , t ∈]−∞, 0[

then we have no contradiction on the overlap since there, 1/v = 1/(1 + t) = u.
Thus we get an integral curve γ of X with γ(0) = (1, 0).

In fact, we simply could have used the second chart to do everything in it! This is
the power of perspective change as provided by manifolds.
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Section 6

Tensor fields
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Vector fields are not the only objects that one can study on a manifold. In fact,
lots of examples appear as functions of tangent spaces.

At each point p ∈ M, we have T ∗pM := TpM∗, the dual space of the tangent space.
It is called the cotangent space, its elements are called covectors or 1-forms. We
could then attempt to formalise what it means to have a family of 1-forms that
varies smoothly with a point.

But we can consider other spaces. For example, the space B(TpM,R) of bilinear
forms TpM × TpM → R. There are also linear forms of many arguments that are
interesting. For example, we could try to generalise the determinant
(antisymmetric multilinear form of rows or columns of a matrix).

Determinants are related to volumes. For example, if we compute det

(
a b

c d

)
it

gives, up to a sign, the surface (2-volume) of the parallelogram spanned by (a, b)

and (c, d) in R2.
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Source: Solomon Golomb, Mathematics Magazine, March 1985.
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This statement is true in higher dimensions: the determinant of an n × n-matrix
is, up to a sign, the volume of the parallelogram spanned by its rows, or columns.

If we generalise determinants to manifolds, we will have the notion of
(infinitesimal) volume as polylinear form on tangent vectors. Indeed, one can
develop a theory of integration using these multilinear differential forms!
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Subsection 1

Tensors on an R-vector space
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Let V be a a vector space over R

Definition 6.1. A k-tensor is a map

T : V k = V × ...× V → R, (v1, ..., vk) 7→ T (v1, ..., vk)

that is R-linear in each argument: for each 1 ≤ i ≤ k and
v1, ..., vi−1, vi+1, ..., vk ∈ V , the map

w 7→ T (v1, ..., vi−1, w, vi+1, ..., vk) is R-linear.

Just like in the case of bilinear maps, the k-tensors form a vector subspace of the
vector space of all functions F(V k ,R). We denote it ⊗kV ∗ (another common
notation in the literature: T kV ∗).

This notation means in particular that ⊗1V ∗ = V ∗ the space of linear forms, and
technically ⊗0V ∗ = R.
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Example 6.2. Let V = Rn. Recall from homework the vector space of matrix
tensors Tenkn(R) = {M : 〈n〉k → R} with 〈n〉 = {1, ..., n}. Let us show that
⊗kV ∗ ∼= Tenkn(R).

For this, call e1, ..., en the canonical basis of Rn. If we have v1, ..., vk , then each
vi = (v1

i , ..., v
n
i ) =

∑
j v
j
i ej . Let T ∈ ⊗

kV ∗. We can compute

T (v1, ..., vk) = T

∑
j1

v
j1
1 ej1 , ...,

∑
jk

v
jk
k ejk

 =
∑
j1,...,jk

v
j1
1 ...v

jk
k T (ej1 , ..., ejk ).

Because of this, for each tensor T ∈ ⊗kV ∗ we define the associated matrix tensor
M(T )j1...jk := T (ej1 , ..., ejk ). Similarly, for each matrix tensor (j1, ..., jk) 7→ Mj1...jk ,
denote

T (M)(v1, ..., vk) :=
∑
j1,...,jk

v
j1
1 ...v

jk
k Mj1...jk ;

since products of coefficients are multilinear, T (M) defines a k-tensor. BothM
and T can be checked to be linear and we have T (M(T )) = T and
M(T (M)) = M.

We will continue working with tensors on an abstract vector space without picking
a basis, but this example may be useful to keep in mind.
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Notation 6.3. Handling multiple arguments is easier if we introduce some index
notation. First, we often write sequences like (v1, ..., vk), so let us define
v [k] := (v1, ..., vk) and so T (v [k]) = T (v1, ..., vk).

Please note that this notation is not compartible with sums: if we interpreted
v [k] + w [k] as (v1 + w1, ..., vk + wk) then T (v [k] + w [k]) 6= T (v [k]) + T (w [k]).

Second, if we have v [k] = (v1, ..., vk) and w [m] = (w1, ..., wm), write
v [k] ∗ w [m] := (v1, ..., vk , w1, ..., wm). Thus, given any sequence a[k +m] there is
unique way to present it as a[k +m] = v [k] ∗ w [m].

Definition 6.4. Let T ∈ ⊗kV ∗ and P ∈ ⊗mV ∗ be two tensors. Their tensor
product is denoted T ⊗ P ∈ ⊗k+mV ∗ and is defined as

T ⊗ P (v [k] ∗ w [m]) := T (v [k]) · P (w [m]), v [k] ∈ V k , w [m] ∈ V m

or in terms of usual indices,

T ⊗ P (a1, ..., ak , ak+1, ..., ak+m) = T (a1, ..., ak)P (ak+1, ..., ak+m), ai ∈ V.
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Proposition 6.5. Let V be a vector space.

1. The assignment (T, P ) 7→ T ⊗ P defines a bilinear map(
⊗kV ∗

)
× (⊗mV ∗)→ ⊗k+mV ∗.

2. The tensor product is associative: for all T ∈ ⊗kV ∗, P ∈ ⊗mV ∗ and
Q ∈ ⊗lV ∗, one has

(T ⊗ P )⊗Q = T ⊗ (P ⊗Q) in ⊗k+m+l V ∗.

Its unit is the 0-tensor corresponding to 1 ∈ R.
One can summarise it by saying that TV ∗ := ⊕k≥0 ⊗k V ∗ is an R-algebra with
respect to ⊗.

Proof.

0. The tensor product T ⊗ P is a tensor: we develop using the linearity of T or
P and then take the product, which is a bilinear map in R.

1. The bilinearity of ⊗ amounts to the verifications like this one:

((λT1 + µT2)⊗ P )(v [k] ∗ w [m]) = (λT1 + µT2)(v [k]) · P (w [m])

= λT1(v [k])·P (w [m])+µT2(v [k])·P (w [m]) = (λT1⊗P+µT2⊗P )(v [k]∗w [m]).
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2. We note that

(v [k] ∗ w [m]) ∗ u[l ] = v [k] ∗ (w [m] ∗ u[l ]) =: v [k] ∗ w [m] ∗ u[l ]

is the same sequence, and so

[(T ⊗ P )⊗Q] ((v [k] ∗ w [m]) ∗ u[l ]) = (T ⊗ P (v [k] ∗ w [m])) ·Q(u[l ])

= T (v [k]) · P (w [m]) ·Q(u[l ])

= T (v [k]) · (P ⊗Q(w [m] ∗ u[l ])) = [T ⊗ (P ⊗Q)](v [k] ∗ (w [m] ∗ u[l ])).

It may look messy, but the idea is very simple: in the end, we are doing a
multiplication of functions. For this very reason the 0 argument tensor 1 ∈ R
is the unit for ⊗. �

While associative, the tensor product is not in general commutative. We already
saw that phenomenon with linear forms.
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Pullback as generalisation of transposition

Let F : V → W be a linear map, then for v [k] = (v1, ..., vk) we write
F (v [k]) = (F (v1), ..., F (vk)).

Given T ∈ ⊗kW ∗, define F ∗T ≡ F ∗(T ) by setting

F ∗(T )(v [k]) := T (F (v [k])) = T (F (v1), ..., F (vk)).

Lemma 6.6. The assignment T 7→ F ∗T is a linear map F ∗ : ⊗kW ∗ → ⊗kV ∗,
defined for each k. Further, for each two tensors T, T ′ on W , one has

F ∗(T ⊗ T ′) = F ∗T ⊗ F ∗T ′.

In other words, F ∗ gives a morphism of R-algebras TW ∗ → TV ∗.

Proof. It is clear that F ∗T is a k-tensor on V : we use linearity of F and then
multilinearity of T to show multilinearity of F ∗T . It is also clear that
F ∗(λT + µP ) = λF ∗T + µF ∗P : it is the good old pullback of functions. Finally,
F (v [k] ∗ v ′[m]) = (F (v1), ..., F (v ′m)) = F (v [k]) ∗ F (v ′[m]), and

F ∗(T ⊗ T ′)(v [k] ∗ v ′[m]) = (T ⊗ T ′)(F (v [k]) ∗ F (v ′[m])) = T (F (v [k]))T ′(F (v ′[m]))

= F ∗T (v [k])F ∗T ′(v ′[m]) = F ∗T ⊗ F ∗T ′(v [k] ∗ v ′[m]). �
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Basis for ⊗kV ∗

We now assume that V is finite dimensional, dim V = n. Denote f 1, ..., f n a basis
in V ∗. We have already seen that f i1 ⊗ f i2 , taken for all i1, i2, form a basis of
⊗2V ∗. It is natural to try to take higher tensor products to generalise this
statement to ⊗kV ∗.

Notation 6.7. A multi-index (i1, ..., ik) can be viewed as an element of 〈n〉k with
〈n〉 = {1, ..., n}. Similarly to our previous notation I will write i [k] = (i1, ..., ik).
The only problem is that i and k are too close in the same alphabet, that can lead
to confusion.

Because of it, let me write using capital calligraphic letters: I[k] = (i1, ..., ik).
Using another letter also permits me to write I instead of I[k] if the length is
clear or not important. This all is to introduce

η⊗I ≡ η⊗I[k] := ηi1 ⊗ ...⊗ ηik

where η1, ..., ηn is any family of linear forms on V .

For any family of vectors v1, ..., vn we can similarly write v [I] = (vi1 , ..., vik ). This
can be fed to a k-tensor, T (v [I]) = T (vi1 , ..., vik ).
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Lemma 6.8. A basis for ⊗kV ∗ is given by

{f ⊗I}I∈〈n〉k = {f i1 ⊗ ...⊗ f ik }i1,...,ik∈〈n〉

where f 1, ..., f n is a basis of V ∗.

Proof. Denote the pre-dual basis e1, ..., en.

1. Let
∑
I AI f

⊗I = 0, where as you guessed AI = Ai1,...,ik . Let J = (j1, ..., jk).
We then see

f ⊗I(e[J ]) = f i1 (ej1 ) · ... · f ik (ejk ) = δ
i1
j1
· ... · δikjk =: δIJ .

Because of this,

0 =

(∑
I
AI f

⊗I

)
(e[J ]) =

∑
I
AI(f ⊗I(e[J ])) =

∑
I
AIδ

I
J = AJ .

And so varying J , we get that each AJ = 0. Linear independence is proven.

2. Any T ∈ ⊗kV ∗ can be written as

T =
∑
I
T (e[I])f ⊗I ;

this can be verified by tedious computations with multiple sums. �
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Remark 6.9. The assignment I 7→ T (e[I]) is a k-matrix tensor in the sense of
homework 3. Indeed, our verifications show that any choice of basis in V gives an
isomorphism ⊗kV ∗ ∼= Tenkn(R) that sends T to {T (e[I])}I . The image of f ⊗I

under this map is the basis EI described in the homework.

It is equally true that T ⊗ T ′(e[I ∗ J ]) = T (e[I]) · T ′(e[J ]), so the isomorphisms
⊗kV ∗ ∼= Tenkn(R) get promoted to the isomorphism of algebras between TV ∗ and
Ten∗n(R) = ⊕k Tenkn(R), where the latter is equipped with matrix tensor product.

Remark 6.10. For a linear map F : V → W and g1, ..., gm a basis of W ∗, Lemma
6.6 implies that for I ∈ 〈m〉k , one has F ∗(g⊗I) = (F ∗g)⊗I . In general, the latter
ceases to be a basis. Of course, if F is invertible, then F ∗ : ⊗kW ∗ ∼= ⊗kV ∗ : (F−1)∗

are mutually inverse maps, thanks again to Lemma 6.6. In that case taking
pullbacks of a basis will produce a basis.

190



Subsection 2

Tensors on a manifold
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We have defined vector fields as families Xp ∈ TpM that vary smoothly with a
point. To formalise this, we used the fact that we can apply tangent vectors to
functions. We then discovered that the same information can be packaged as a
derivation of C∞(M).

Tensor fields are defined similarly. Remember that for a manifold M, we denote
T ∗pM = (TpM)∗. To each p ∈ M, we attach Tp ∈ ⊗kT ∗pM. We need to say what it
means to “vary smoothly with a point”

We note that Tp : T ∗pM × ...× T ∗pM → R can be applied to a k-tuple of smooth
vector fields X1, ..., Xk , if we calculate them at p. The condition is thus to say that

p 7→ Tp((X1)p, ..., (Xk)p)

is a smooth function. It works! And in fact, a lot of arguments (but not all) are
similar to the vector field case.
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Definition 6.11. Let M be a smooth manifold. A smooth (covariant) k-tensor
field on U ∈ OpM is a family T = {Tp ∈ ⊗kT ∗pM}p∈U that satisfies the following
condition. For each V ∈ OpU and each k-tuple of smooth vector fields
X1, ..., Xk ∈ TM(V ), the map

T (X1, ..., Xk) : V → R, p 7→ Tp((X1)p, ..., (Xk)p)

is smooth. We denote ⊗kT ∗M(U) the set of smooth k-tensor fields on U. It is
naturally a vector space. To avoid ambiguity, we put ⊗0T ∗M(U) = C∞M (U).

As before, we can use the multi-index notation: X[k] = (X1, ..., Xk) and X[k]p,
T (X[k]) and Tp(X[k]p). If I ∈ 〈dimM〉k , then X[I] = (Xi1 , ..., Xik ), and so on.

Lemma 6.12. Let g ∈ C∞M (U) and T ∈ ⊗kT ∗(U). Then g · T defined as

(g · T )(X[k]) := g · T (X[k])

is a smooth k-tensor field. The assignment (g, T ) 7→ g · T is bilinear and respects
the algebra structure of functions: g · (h · T ) = (g · h) · T . In other words,
⊗kT ∗M(U) is a C∞M (U)-module.

Proof. Trivial checks using the smoothness of sum and product operations. �
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Another nice property is that we have multilinearity in the strong, C∞-sense.

Lemma 6.13. Let T ∈ ⊗kT ∗M(U). Then

T (X1, ..., f Xi + gYi , ..., Xk) = f T (X1, ..., Xi , ..., Xk) + gT (X1, ..., Yi , ..., Xk)

where X1, ..., Xi , Yi , ..., Xk ∈ TM(V ) and f , g ∈ C∞M (V ) for V ⊂ U. In particular, T
can be viewed as a function

T : TM(U)k → C∞M (U)

that is C∞M (U)-linear in each argument.

Proof. For each point p ∈ V , we have (f Xi + gYi )p = f (p)(Xi )p + g(p)(Yi )p. Thus

T (X1, ..., f Xi + gYi , ..., Xk)(p) = Tp ((X1)p, ..., f (p)(Xi )p + g(p)(Yi )p, ..., (Xk)p)

= f (p) · Tp ((X1)p, ..., (Xi )p, ..., (Xk)p) + g(p) · Tp ((X1)p, ..., (Yi )p, ..., (Xk)p) .

Thus we simply used the fact that Tp are multilinear forms of tangent vectors at
p. �

194



Proposition 6.14. For a manifold M,

1. The collection {⊗kT ∗M(U)}U∈OpM = ⊗kT ∗M is a sheaf of functions to
⊗kT ∗M :=

∐
p ⊗kT ∗pM.

2. For T = {Tp}p∈U to be smooth, it is sufficient to verify that p 7→ Tp(X[k]p) is
smooth for any X[k] ∈ TM(U)k (no need to consider subsets of U).

3. As a corollary [4, Lemma 12.24], smooth tensor fields ⊗kT ∗M(U) are in
bijective correspondence with functions P : TM(U)k → C∞M (U) that are
C∞M (U)-linear in each argument. For such a P , its k-tensor at p is given by

Pp(V1, ..., Vk) = P (X1, ..., Xk)(p)

where V1, ..., Vk ∈ TpM and X1, ...Xk are any vector fields on U such that
(Xi )p = Vi .

The proof of this statement is tedious but not new.

1. It is clear that we can restrict tensor fields, same trick as for vector fields.

2. The sheaf property will follow from the sheaf property of functions.

3. The statements 2. and 3. rely on the extension lemma for vector fields: for
each X ∈ T (V ) there exists a vector field on bigger U that coincides with X in
some neighbourhood. This is proven using bump functions.

Perhaps I will add such a proof later.
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Example 6.15. For k = 1, the elements of T ∗M(U) ≡ ⊗1T ∗M(U) are called
cotangent vector fields, or 1-forms. Perhaps the most important example of a
1-form is simply given by functions. For f ∈ C∞M (U) and X ∈ TM(U), define df as

df : X 7→ df (X) := X(f ), p 7→ dfp(Xp) := Xp(f ) ≡ f∗Xp(idR).

There is some double dual game going on here: vectors are functions on functions,
so functions are functions on vectors! Each dfp : Yp 7→ Yp(f ) is a linear form on
TpM.

Example 6.16. Let ϕ : U
∼→ Ω be a chart. We denote ϕ(p) = (ϕ1(p), ..., ϕn(p))

where n = dimM. Each ϕi = ϕ∗(x i ) is in C∞M (U) as pullback of coordinate
functions x 7→ x i . We claim that dϕ1, ..., dϕn generates T ∗(U) under linear sums
and multiplication by functions.

Recall the generating vector fields eϕ1 , ..., e
ϕ
n , e

ϕ
i (f ) := ϕ∗(∂x i (f ◦ ϕ−1)). Let us

check

dϕi (eϕj ) = eϕj (ϕi ) = ϕ∗(∂x j (ϕ
i ◦ ϕ−1)) = ϕ∗(∂x j x

i ) = ϕ∗δij = δij ;

here we interpret δij ≡ δ
i
j · 1 as a function on U.
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Given that any vector field uniquely decomposes as X =
∑

i X
ieϕi with X i smooth

on U, we have dϕi (X) = X i .

Let ω ∈ T ∗(U). Then ω(X) =
∑

i ω(X ieϕi ). By C∞-linearity we have
ω(X ieϕi ) = X iω(eϕi ). We conclude that

ω(X) =
∑
i

ω(eϕi )dϕi (X) =

(∑
i

ω(eϕi )dϕi

)
(X).

Of course, any expression of the form
∑

i αidϕ
i with αi ∈ C∞(U) is also a smooth

1-form. Due to relations dϕi (eϕj ) = δij it is easy to check that if∑
i αidϕ

i =
∑

i βidϕ
i , then all αi = βi .

One particular case is to consider U = Ω and ϕ = idΩ. Then we have 1-forms
dx1, ..., dxn that satisfy dx i (∂x j ) = δij . Any ω ∈ T

∗(Ω) can be written as
ω =

∑
ωidx

i with ωi smooth functions on Ω.

For f ∈ C∞(Ω) and X =
∑
X i∂i , we have

df (X) = X(f ) =
∑

X i∂i f =
∑ ∂f

∂x i
dx i (X),

and we welcome back the differential formula df =
∑
∂x i f · dx i .
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Remark 6.17. In the example above, one could wonder if in fact any 1-form on
M is df for some f ∈ C∞(M). This is true on M = R (a statement called
Poincaré’s lemma), but is already false on M = R2 \ 0. A nontrivial example is

ω(x, y) =
xdy − ydx
x2 + y2

=
−y

x2 + y2
· dx +

x

x2 + y2
dy

but to prove that ω 6= df , we will need some further theory.

Of course, we can define the tensor product, simply taking tensor products
pointwise:

Definition 6.18. Let T ∈ ⊗kT ∗(U) and T ′ ∈ ⊗lT ∗(U). Their tensor product is
defined as

T ⊗ T ′(X[k] ∗ Y [l ]) = T (X[k]) · T ′(Y [l ]), p 7→ Tp(X[k]p) · T ′p(Y [l ]p).

The smoothness of products of functions guarantees that T ⊗ T ′ ∈ ⊗k+lT ∗(U).

Lemma 6.19. The tensor product satisfies bilinearity and associativity properties
similar to those of Proposition 6.5. In addition to that, for each g ∈ C∞(U), one
has

(gT )⊗ T ′ = g(T ⊗ T ′) = T ⊗ (gT ′). �
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Example 6.20. Let ϕ : U
∼→ Ω be a chart. Then for each I ∈ 〈n〉k we can take

dϕ⊗I ∈ ⊗kT ∗(U). It is easy to see that for any J ∈ 〈n〉k ,

dϕ⊗I(eϕ[J ]) = dϕi1 ⊗ ...⊗ dϕik (eϕj1
, ..., eϕjk

) = δIJ .

Because of this, by repeating the same arguments as before, any T ∈ ⊗kT ∗(U) can
be uniquely written as

T =
∑
J
T (e[J ])dϕ⊗J =

∑
j1,...,jn

T (eϕj1
, ..., eϕjk

)dϕj1 ⊗ ...⊗ dϕjk

so in short, the tensors on a chart are expressions
∑
J fJ dϕ

⊗J with fJ ∈ C∞(U).

We can in particular write U = Ω and ϕ = id. Then, the k-tensor fields on Ω are
simply the expressions

∑
J fJ dx

⊗J with fJ smooth on Ω.

The sheaf property of tensor fields then gives:

Corollary 6.21. Let T : p 7→ Tp ∈ ⊗kT ∗pM be a family of k-tensors. Then it is
smooth iff for each p ∈ M there exists a chart (U,ϕ) containing p such that
T |U =

∑
J fJ dϕ

⊗J with fJ smooth on U.
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Pullback

Unlike vector fields, tensor fields can be pulled back along smooth maps
F : M → N.

Definition 6.22. Let F : M → N and T ∈ ⊗kT ∗(N). Define F ∗T ≡ F ∗(T ), a
family of k-tensors on M, by setting for each p ∈ M

F ∗(T )p((X1)p, ..., (Xk)p) := TF (p)(F∗(p)(X1)p, ..., F∗(p)(Xk)p).

Here, (Xi )p ∈ TpM and F∗(p) : TpM → TF (p)N the pushforward map. The family
F ∗T is called the pullback of T along F .

Proposition 6.23. In the situation above, one has F ∗G∗ = (G ◦ F )∗, and

1. For each f ∈ C∞(N), one has F ∗df = d(f ◦ F ),

2. The pullback F ∗T is a smooth tensor field on M for any T ∈ ⊗kT ∗(N),

3. The pullback operation is linear is compatible with multiplication of tensors
by functions:

F ∗(f T1 + gT2) = F ∗(f ) · F ∗T1 + F ∗(g) · F ∗T2.

More generally, for any two tensor fields T1, T2 on N, one has
F ∗(T1 ⊗ T2) = F ∗T1 ⊗ F ∗T2.
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Proof. I

Let us see what says the first statement. By definition,

(F ∗df )p(Xp) = dfF (p)(F∗Xp) = F∗Xp(f ) = Xp(f ◦ F ) = d(f ◦ F )p(Xp).

Note in particular that this implies that the pullback F ∗df is smooth on M.

The verification of C∞-linearity is a standard pointwise computation. Fix V1, ..., Vk
and W1, ...,Wk ′ ∈ TpM. Then:

F ∗(T ⊗ T ′)p(V [k] ∗W [k ′]) = (T ⊗ T ′)F (p)(F∗(V [k]) ∗ F∗(W [k ′]))

= TF (p)(F∗(V [k])) · T ′F (p)(F∗(W [k ′])) = F ∗(T )p(V [k]) · F ∗(T ′)p(W [k ′])

= (F ∗(T )⊗ F ∗(T ′))p(V [k] ∗W [k ′]).

Its point is that the tensor products are are preserved pointwise. The third
statement will thus be proven if we show that F ∗ preserves smoothness.
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Proof. II
Note in particular that

F ∗(df1 ⊗ ...⊗ dfk) = F ∗df1 ⊗ ...⊗ F ∗dfk = d(f1 ◦ F )⊗ ...⊗ d(fk ◦ F );

everything here is smooth, so F ∗ preserves smoothness of the decomposable
k-tensors. This suggests that we might want to do it in charts.

First, consider the situation

U - M

V

F̄
?
- N

F
?

with U, V open and F̄ = F |U . For T ∈ ⊗kT ∗(N), we claim that
(F ∗T )|U = F̄ ∗(T |V ). This is true at each point p of U, since the diagram on the
level of tangent spaces commutes:

TpU
∼- TpM

TF (p)V

F̄∗
?

∼
- TF (p)N.

F∗
?
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Proof. III

In detail, for X1, ..., Xk ∈ TpU = TpM, using TpV = TpN.

(F ∗T )p(X[k]) = TF (p)(F∗X[k]) = TF (p)(F̄∗X[k]) = (F̄ ∗T |V )p(X[k]).

Finally, we for each p ∈ M there exist charts (U,ϕ) containing p and (V, ψ)

containing F (p), and a commutative diagram

U - M

V

F̄
?
- N

F
?

Any smooth k-tensor field P on V can be written as P =
∑
I fIdψ

⊗I . We verify
that

F̄ ∗(P ) = F̄ ∗

(∑
I
fIdψ

⊗I

)
=
∑
I
F ∗(fI) · F̄ ∗dψ⊗I

The latter expression is a smooth k-tensor field on U. For a general T on N, we
can say that there exists a cover ∪Ui = M such that F ∗T |Ui is smooth for each i .
Sheaf property allows to conclude. �
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Example 6.24. The proof above really explains how to compute the pullbacks.
In particular, let us consider a map F : Ω→ Θ. Denote (x1, ..., xn) the coordinates
in Ω and (y1, ..., ym) the coordinates in Θ. If we write F (x) = (F 1(x), ..., Fm(x)),
then y i ◦ F = F i , and so F ∗(dy i ) = d(y i ◦ F ) = dF i .

We already computed that at p = (x1, ..., xn), one has dF ip =
∑ ∂F i

∂x j
(p)dx jp, or

simply dF i =
∑

j ∂x j F
i · dx j . For each I ∈ 〈m〉k , we thus get

F ∗(dy⊗I) = dF⊗I = dF i1 ⊗ ...⊗ dF ik

=
∑

1≤j1,...,jk≤n

∂F i1

∂x ji
· ... ·

∂F ik

∂x jk
dx j1 ⊗ ...⊗ dx jk

=
∑
J∈〈n〉k

J(F )IJ dx
⊗J , J(F )IJ =

∂F i1

∂x ji
· ... ·

∂F ik

∂x jk

As a consequence, given any T =
∑
TIdy

⊗I with TI smooth functions on Θ

(matrix k-tensors attached to each point of Θ), we have

(F ∗T )p =
∑

I∈〈m〉k ,J∈〈n〉k
TI(F (p)) · J(F )IJ (p) · dx⊗Jp .
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Arguably, the theory of k-tensors looks like a generalisation of the calculus of
differentials to “many entries”, and the formulas that we achieve are very natural,
simply the “added up” chain rules. There are approaches to differential geometry
that define 1-forms and tensor fields before vector fields as certain formal algebraic
expressions, but there are some hidden difficulties with that.

Let us conclude this section with defining an example that is key to a whole
subdomain of differential geometry.

Definition 6.25. A Riemannian metric on a manifold M is a smooth 2-tensor
field g ∈ ⊗2T ∗(M) such that at each point p ∈ M, the map

gp : TpM × TpM → R

defines an inner product on TpM.

Example 6.26. On Rn, we can consider g = dx1 ⊗ dx1 + ...+ dxn ⊗ dxn. Given
two tangent vectors X =

∑
X i∂i |p, Y =

∑
Y i∂i |p at p, we see, using dx ip(∂j |p) = δij ,

gp(X, Y ) =
∑

1≤i≤n
dx ip(X)dx ip(Y ) =

∑
1≤i≤n

X iY i

and this is indeed an inner product.
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Example 6.27. It should be familiar to you from MAA201 or MAA206 that if
i : V → W is an injection of R-vector spaces and h is an inner product on W , then
(v, v ′) 7→ h(i(v), i(v ′)) is an inner product on V .

Thus if we have an immersion F : M → N and g is a Riemannian metric on N,
then F ∗(g) will be a Riemannian metric on M. Indeed, for X, Y ∈ TpM,

(F ∗g)p(X, Y ) = gF (p)(F∗X, F∗Y )

and by definition F∗ is an injection.

This can in particular be applied to submanifolds of Euclidean spaces. For
i : Sn ⊂ Rn+1, we can pull back g = dx0 ⊗ dx0 + ...+ dxn ⊗ dxn to obtain
gr := i∗g, the Riemannian metric on Sn, called the round metric.

If you want to know what it looks like in a coordinate chart ϕ : U ∼= Ω, the
conventional way is to consider

(ϕ−1)∗(gr |U) = (ϕ−1)∗(i∗g)|U = (i ◦ ϕ−1)∗g.

This we can compute since i ◦ ϕ−1 : Ω→ Rn+1 is a smooth map between opens in
Euclidean spaces.
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Riemannian metrics are extremely useful for a variety of applications, and in fact
some Riemannian metric always exist on a (paracompact) manifold. There is a
generalisation to Lorentzian metrics that is used in general relativity.

Let I be an open interval in R and γ : I → M a smooth map. At each point t ∈ I,
we have d

dx
|t , and as we explained one can consider the tangent vector to the

curve γ:

γ′(t) := γ∗(t)

(
d

dx

∣∣∣∣
t

)
∈ Tγ(t)M.

If g is a Riemannian metric on M, then we can define∥∥γ′(t)∥∥
g

:=
√
gγ(t)(γ′(t), γ′(t)) ≥ 0

and for a ≤ b two points of I, we can define the length of curve γ as

Lg(γ) =

∫ b

a

∥∥γ′(t)∥∥
g
dt

and it is possible, using pullbacks of g, to show that the function t 7→ ‖γ′(t)‖g is
smooth. This may seem abstract but with some practice, it allows to compute
curve lengths on the familiar examples!
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Example 6.28. Let us simply decipher what this all means in the case of Rn with
g =

∑
dx i ⊗ dx i . A curve γ : I → Rn is a collection of smooth maps

t 7→ (γ1(t), ...γn(t)). In this case

γ′(t)(f ) =
d(f ◦ γ)

dt
(t) =

∑
i

dγ i

dt
(t)

∂f

∂x i
(γ(t)).

In other words γ′(t) =
∑

i
.
γ i (t)∂i |γ(t). Feeding this to g gives∥∥γ′(t)∥∥

g
=
√

(
.
γ1(t))2 + ...+ (

.
γn(t))2,

something that is familiar to physicists as the velocity vector. The integrals∫ b

a

∥∥γ′(t)∥∥
g
dt =

∫ b

a

√
(
.
γ1(t))2 + ...+ (

.
γn(t))2dt

have a natural interpretation of the length of the “physical” trajectory in the space
Rn.
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Section 7

Differential forms
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Subsection 1

Alternating forms on a vector space

210



We use the notation Σk = Aut(〈k〉) to denote the group of permutations of k
elements:

σ : 1, ..., k 7→ σ(1), ..., σ(k).

We shall make use of compositions of permutations: for µ, σ ∈ Σk , the composed
permutation µ ◦ σ acts as i 7→ µ(σ(i)).

Definition 7.1. Let V be a R-vector space. A k-tensor A ∈ ⊗kV ∗ is alternating,
or skew-symmetric, or a linear k-form, if for each v1, ..., vk ∈ V and each σ ∈ Σk ,
we have

A(v1, ..., vk) = (−1)σA(vσ(1), ..., vσ(k))

where (−1)σ = +1 if σ can be expressed as an even number of transpositions, and
(−1)σ = −1 otherwise.

We can again introduce some multi-index notation. For v [k] = (v1, ...vk), we
interpret it as a function 〈k〉 → V and write σ∗v [k] = (vσ(1), ..., vσ(k)). Thus the
above equality becomes A(v [k]) = (−1)σA(σ∗v [k]).
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We denote ΛkV ∗ ⊂ ⊗kV ∗ the set of all k-linear forms. It is easy to see that it is a
vector subspace. To understand it better, we would like to consider a projection
from ⊗kV ∗ to ΛkV ∗.

For σ ∈ Σk and T ∈ ⊗kV ∗, denote σ∗T the tensor

σ∗T (v [k]) = (−1)σT (σ∗v [k]).

Lemma 7.2. The assignment T 7→ σ∗T defines a linear map σ∗ : ⊗kV ∗ → ⊗kV ∗.
Moreover, for σ, µ ∈ Σk , we have µ∗(σ∗T ) = (µ ◦ σ)∗T . In other words, σ 7→ σ∗
provides a representation of Σk on the k-tensors.

Proof. The linearity of σ∗ is easy to verify. We now try to understand how it
works with respect to compositions. By definition,

µ∗(σ∗T )(v [k]) = (−1)µσ∗T (µ∗v [k]) = (−1)µσ∗T (vµ(1), ..., vµ(k)).

Denote wi = vµ(i). Then wσ(i) = vµ(σ(i)) and so

(−1)µσ∗T (w1, ..., wk) = (−1)µ(−1)σT (vµ(σ(1)), ..., vµ(σ(k))).
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We can conclude that

µ∗σ∗T (v [k]) = (−1)µ◦σT ((µ ◦ σ)∗v [k])

since the signs of permutations are also compatible with composition (so-called
sign representation of Σk ). �

Definition 7.3. For T ∈ ⊗kV ∗, denote

Alt(T ) :=
1

k!

∑
σ∈Σk

σ∗T.

In other words,

Alt(T )(v1, ..., vk) =
1

k!

∑
σ∈Σk

(−1)σT (vσ(1), ..., vσ(k)).

Lemma 7.4. The operation T 7→ Alt(T ) is a linear map Alt : ⊗kV ∗ → ΛkV ∗ that
satisfies Alt(A) = A for each A ∈ ΛkV ∗. In particular, Alt ◦Alt = Alt.
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Proof.

1. Note that A ∈ ΛkV ∗ iff for each σ ∈ Σk , one has σ∗A = A (A is an invariant of
the representation). For this reason

Alt(A) =
1

k!

∑
σ

σ∗A =
1

k!

∑
σ

A = A.

2. The operation T 7→ Alt(T ) is linear as a linear combination of linear maps. To
see that it lands in ΛkV ∗, note that

µ∗ Alt(T ) = µ∗

(
1

k!

∑
σ

σ∗T

)
=

1

k!

∑
σ

(µ ◦ σ)∗T.

For each τ ∈ Σk , there exists unique σ such that τ = µ ◦ σ: just take
σ = µ−1 ◦ τ . Thus in the sum above, each permutation µ ◦ σ = τ ∈ Σk will
appear exactly once. This means that we can write

1

k!

∑
σ

(µ ◦ σ)∗T =
1

k!

∑
τ

τ∗T = Alt(T )

This concludes the proof that µ∗ Alt = Alt. �
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The operation T 7→ Alt(T ) is defined for each k ≥ 0 and is identity for k ≤ 1. To
understand it better, we shall study the interaction of Alt with tensor products.

Proposition 7.5. Let T ∈ ⊗kV ∗, P ∈ ⊗mV ∗ and Q ∈ ⊗lV ∗ be three tensors, then

1. Alt(T ⊗ P ) = (−1)km Alt(P ⊗ T ),

2. Alt(Alt(T ⊗ P )⊗Q) = Alt(T ⊗ P ⊗Q) = Alt(T ⊗ Alt(P ⊗Q)).

Proof.

1. Denote s ∈ Σk+m the following permutation:

s(i) = m + i , 1 ≤ i ≤ k, s(j) = j − k, k + 1 ≤ j ≤ k +m;

in other words, s pushes first k elements to become last k elements, without
changing order. If we imagine it via transpositions then one needs to pass
each k, k − 1, ..., 1 through m elements. In other words, (−1)s = (−1)km.

2. Because of how we defined s, it is easy to see that

s∗(T ⊗ P ) = (−1)sP ⊗ T.
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3. Using this, we compute

(−1)km Alt(P ⊗ T ) = Alt(s∗(T ⊗ P )) =
1

(k +m)!

∑
σ

(σ ◦ s)∗(T ⊗ P ).

We can then reason the same way as in Lemma 7.4 to conclude that the latter
sum is equal to Alt(T ⊗ P ).

4. Denote R := T ⊗ P ∈ ⊗rV ∗ where r = k +m. We now prove that
Alt(Alt(R)⊗Q) = Alt(R ⊗Q). Note that

Alt(R)⊗Q =
1

r !

∑
σ∈Σr

(σ∗R)⊗Q =
1

r !

∑
σ∈Σr

σ̃∗(R ⊗Q)

where σ̃ is a r + l-permutation that acts as σ on the first r elements.

5. The set of all permutations of Σr+l that are identity on the last l elements is
a subgroup H ⊂ Σr+l isomorphic to Σr via the assignment σ 7→ σ̃.
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6. With this in mind, we have

Alt(Alt(R)⊗Q) =
1

(r + l)!

1

r !

∑
µ∈Σr+l

∑
σ̃∈H

(µ ◦ σ̃)∗(R ⊗Q)

=
1

(r + l)!

1

r !

∑
σ̃∈H

∑
τ∈Σr+l

τ∗(R ⊗Q) =
1

(r + l)!

r !

r !

∑
τ∈Σr+l

τ∗(R ⊗Q).

Here we interchanged the sum order and understood, again, that∑
µ∈Σr+l

(µ ◦ σ̃)∗(R ⊗Q) =
∑

τ∈Σr+l
τ∗(R ⊗Q) just like in Lemma 7.4.

7. This concludes the proof of the second point of the proposition, as we can
reason the similar way for the other equation. �

As you can see, all the index computations disappeared once the we formalised the
action of symmetric groups on spaces of tensors.
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Definition 7.6. For A ∈ ΛkV ∗ and B ∈ ΛmV ∗, we define their wedge product
A ∧ B as

A ∧ B :=
(k +m)!

k!m!
Alt(A⊗ B).

In particular, let us take f , f ′ ∈ Λ1V ∗ = V ∗. Then

f ∧ f ′ =
2!

1!1!

1

2!
(f ⊗ f ′ − f ′ ⊗ f ) = f ⊗ f ′ − f ′ ⊗ f .

Lemma 7.7. The wedge product satisfies:

1. It is a bilinear map ∧ : ΛkV ∗ × ΛmV ∗ → Λk+mV ∗,

2. It is graded-commutative: A∧B = (−1)kmB ∧A for A ∈ ΛkV ∗ and B ∈ ΛmV ∗,

3. It is associative: (A ∧ B) ∧ C = A ∧ (B ∧ C).

Proof. It is probably worth showing how the coefficients work for associativity:

(A∧B)∧C =
(k +m)!

k!m!
Alt(A⊗B)∧C =

(k +m + l)!

(k +m)!l!

(k +m)!

k!m!
Alt(Alt(A⊗B)⊗C)

=
(k +m + l)!

k!m!l!
Alt(A⊗ B ⊗ C)

and a similar computation for the other triple product. �
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Remark 7.8. Repeating the previous computation inductively, one can show that
given A1, ..., Am, Ai ∈ Λki V ∗, one has

A1 ∧ ... ∧ Am =
(k1 + ...+ km)!

k1!...km!
Alt(A1 ⊗ ...⊗ Am).

In particular, given m 1-forms f 1, ..., f m, we have
f 1 ∧ ... ∧ f m = m!Alt(f 1 ⊗ ...⊗ f m), or

f 1 ∧ ... ∧ f m =
∑
σ∈Σm

(−1)σf σ(1) ⊗ ...⊗ f σ(m).

Corollary 7.9. Let ω ∈ Λ2k+1V ∗. Then ω ∧ ω = 0.

Proof. ω ∧ ω = (−1)(2k+1)2
ω ∧ ω = −ω ∧ ω. �
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A word about linear maps.

Lemma 7.10. Let F : V → W be a linear map, then

1. The assignment A 7→ F ∗A defines a linear map ΛkW ∗ → ΛkV ∗. In other
words, the pullback of k-tensors preserves skew-symmetry.

2. One has F ∗(A ∧ B) = F ∗A ∧ F ∗B.

Proof. Since F ∗A(v1, ..., vk) = A(F (v1), ..., F (vk)), it is easy to see that this
expression is skew-symmetric. Moreover, we see that

Alt(F ∗A⊗ F ∗B)(v1, ..., vk+m)

=
1

(k +m)!

∑
σ

(−1)σA(F (vσ(1)), ..., F (vσ(k)))B(F (vσ(k+1)), ..., F (vσ(k+m)))

= Alt(A⊗ B)(F (v1), ..., F (vk), F (vk+1), ..., F (vk+m))

= F ∗ Alt(A⊗ B)(v1, ..., vk+m).

We then conclude using the definition of ∧. �
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Basis for ΛkV ∗

Notation 7.11. Given f 1, ..., f n, a family of linear forms on V , we can introduce,
for I = (i1, ..., ik) ∈ 〈n〉k , the notation

f ∧I := f i1 ∧ ... ∧ f ik .

In light of the previous corollary and Lemma 7.7, we see that if I has a repeating
index, then f ∧I = 0. In effect, if for example im = im′ , then by Corollary 7.9

f i1 ∧ ... ∧ f ik = ±f im ∧ f im′ ∧ ... = 0.

We are thus inclined to consider only the ordered I, those multi-indexes for which
1 ≤ i1 < i2 < ... < ik ≤ n. Even in this case we might still get f ∧I = 0 if the f i are
linearly dependent.

Proposition 7.12. Let f 1, ..., f n be a basis of V ∗. Then

f ∧I , I = (i1, ..., ik), 1 ≤ i1 < ... < ik ≤ n

form a basis of ΛkV ∗. In particular, its dimension is
(
n

k

)
, meaning that for

k > n, ΛkV ∗ = 0.
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Proof.
1. Choose e1, ..., en the pre-dual basis to f 1, ..., f n. For each ordered I and each

ordered J = (j1, ..., jk), we have

f ∧I(e[J ]) =
∑
σ

(−1)σf ⊗σ
∗I(e[J ]) = f i1 (ej1 )⊗ ...⊗ f ik (ejk ) + 0 = δIJ .

Here we use that for σ different from identity, f iσ(1) (ej1 )⊗ ...⊗ f iσ(k) (ejk ) is
always zero. Otherwise we would have (j1, ..., jk) = (iσ(1), ..., iσ(k)), but this is
impossible since σ∗I = (iσ(1), ..., iσ(k)) is never ordered.

2. We use this to show linear independence: if∑
I,<

CI f
∧I :=

∑
I,1≤i1<...<ik≤n

CI f
∧I = 0

then we evaluate it on all e[J ] for all ordered J ∈ 〈n〉k to get that CJ = 0.

3. Any A ∈ ΛkV ∗ is also a k-tensor, so it can be written as
∑
I AI f

⊗I , taken
over all multi-indices. Now,

A = Alt(A) =
∑
I
AI Alt(f

⊗I) =
1

k!

∑
I
AI f

∧I .

The proof is over, since either f ∧I = 0 if I contains a repeating index, or
f ∧I = ±f ∧J where J is ordered. �
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Remark 7.13. We see that each k-form A can be written in two ways:

A =
∑
I,<

AI f
∧I =

1

k!

∑
I
BI f

∧I .

The former presentation is unique, since it is a decomposition with respect to a
basis. The coefficients AI can be computed as A(e[I]). The latter presentation is
not unique. For example,

f 1 ∧ f 2 =
1

2
f 1 ∧ f 2 −

1

2
f 2 ∧ f 1 =

1

2

(
1

2
f 1 ∧ f 2 −

3

2
f 2 ∧ f 1

)
.

We can fix things somewhat by putting BI = AI when I is ordered, by putting
Bj1....jk = 0 if some index is repeating, and setting in all other cases
Bj1....jk = (−1)σAi1...ik where (i1, ..., ik) is the ordered multi-index uniquely
obtained from (j1, ..., jk) by some permutation σ. This is, however, a choice: in
particular, one can take any values for coefficients BI with repeating indices.

One nice application of bases is the following lemma:

Lemma 7.14. Let V be a vector space of dimension n. For any linear map
F : V → V and any ω ∈ ΛnV ∗, one has F ∗ω = detF · ω where detF is defined, as
usual, as det of the matrix of F in some basis.
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Proof. Take a basis e1, ..., en, denote M = (M i
j ) the matrix of F with respect to

that basis: F (ei ) =
∑

j ejM
j
i . Denote f 1, ..., f n the dual basis. From MAA201

(Ch.1, Prop 4.3) we know that F ∗(f i ) =
∑

j M
i
j f
j . Thus,

F ∗(f 1 ∧ ... ∧ f n) = F ∗(f 1) ∧ ... ∧ F ∗(f n) =
∑
j1,...,jn

M1
j1
·Mn

jn
f j1 ∧ ... ∧ f jn .

We observe that either f j1 ∧ ... ∧ f jn = 0 (some index is repeating), or
f j1 ∧ ... ∧ f jn = (−1)σf 1 ∧ ... ∧ f n, where σ satisfies σ(i) = ji . For this reason we
can write

F ∗(f 1 ∧ ... ∧ f n) =
∑
σ

(−1)σM1
σ(1) ·M

n
σ(n)f

1 ∧ ... ∧ f n = detM · f 1 ∧ ... ∧ f n.

The proof is concluded by observing that any ω ∈ ΛnV ∗ is uniquely expressed as
ω = c · f 1 ∧ ... ∧ f n. �

Note that any ω 6= 0 serves as a basis of ΛnV ∗ since the dimension of the latter is(
n

n

)
= 1. One could reverse the discussion and define detF using the identity of

the lemma.
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Subsection 2

Differential forms on manifolds
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Definition 7.15. Let M be a smooth manifold. A differential k-form on
U ∈ OpM is a family ω = {ωp ∈ ΛkT ∗pM}p∈U that is a smooth k-tensor. That is,
for each V ∈ OpU and each k-tuple of smooth vector fields X1, ..., Xk ∈ TM(V ),
the map

ω(X1, ..., Xk) : V → R, p 7→ ωp((X1)p, ..., (Xk)p)

is smooth. We denote ΛkM(U) the set of differential k-forms on U. To avoid
ambiguity, we put Λ0

M(U) := C∞M (U).

As before, we can use the multi-index notation: X[k] = (X1, ..., Xk) and X[k]p,
ω(X[k]) and ωp(X[k]p). If I ∈ 〈dimM〉k , then X[I] = (Xi1 , ..., Xik ), and so on.

Lemma 7.16. The differential k-forms ΛkM(U) form a vector subspace of
⊗kT ∗(U). Moreover, for g ∈ C∞M (U) and ω ∈ ΛkM(U), the product g · ω defined
previously as

(g · ω)(X[k]) := g · ω(X[k])

is a differential k-form. In other words, ΛkM(U) is a C∞M (U)-submodule of
⊗kT ∗M(U).

Proof. Mulitplying by a function does not break alternation. �
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Being k-tensors, the differential forms enjoy the multilinearity in the C∞-sense:
for ω ∈ ΛkM(U),

ω(X1, ..., f Xi + gYi , ..., Xk) = f ω(X1, ..., Xi , ..., Xk) + gω(X1, ..., Yi , ..., Xk)

where X1, ..., Xi , Yi , ..., Xk ∈ TM(V ) and f , g ∈ C∞M (V ) for V ⊂ U. In particular, ω,
viewed as a function from TM(U)k to C∞M (U), is C∞M (U)-linear in each argument.

Proposition 7.17. For a (smooth) manifold M,

1. The collection {ΛkM(U)}U∈OpM = ΛkM is a sheaf of functions to
ΛkT ∗M :=

∐
p ΛkT ∗pM ⊂

∐
p ⊗kT ∗pM.

2. For ω = {ωp}p∈U to be smooth, it is sufficient to verify that p 7→ ωp(X[k]p) is
smooth for any X[k] ∈ TM(U)k (no need to consider subsets of U).

3. As a corollary, differential k-forms ΛkM(U) are in bijective correspondence
with functions A : TM(U)k → C∞M (U) that are C∞M (U)-linear in each argument
and are alternating. For such an A, its k-form at p is given by

Ap(V1, ..., Vk) = A(X1, ..., Xk)(p)

where V1, ..., Vk ∈ TpM and X1, ...Xk are any vector fields on U such that
(Xi )p = Vi (they can be shown to exist).
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Proof. The proof of this statement is not very hard if we accept the similar
Proposition 6.14 for the tensors.

1. A restriction of an alternating tensor ω ∈ ΛkM(U) to V ⊂ U is alternating at
each point of V . Similarly, a tensor T such that Tp is alternating at each
point p of Ui , where ∪Ui = U, is alternating everywhere.

2. Being smooth as a differential k-form is the same as being smooth as a
k-tensor.

3. The function A will correspond to some k-tensor. One then verifies from the
alternating property of A that each Ap is alternating. �

Example 7.18. For k = 1, we have Λ1
M(U) = T ∗M(U) ≡ ⊗1T ∗M(U). Thus for we

have the example of df defined for f ∈ C∞M (U) = Λ0
M(U) as

df : X 7→ df (X) := X(f ), p 7→ dfp(Xp) := Xp(f ).

For each chart (U,ϕ), writing ϕ(p) = (ϕ1(p), ..., ϕn(p)) just as before gives us that
each ω ∈ Λ1

M(U) uniquely decomposes as ω =
∑

i fidϕ
i , where fi are smooth on U.
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We proceed to define the wedge product.

Definition 7.19. Let ω ∈ ΛkM(U) be a differential k-form and ω′ ∈ ΛlM(U) be a
differential l-form. Their wedge product is defined as

ω ∧ ω′ : p 7→ ωp ∧ ω′p.

Equivalently, we can introduce it by generalising the calculus of the preceding
subsection to C∞(U)-multilinear functions T : TM(U)m → C∞M (U). For such a T ,
we define σ∗T by setting σ∗T (X1, ..., Xm) = (−1)σT (Xσ(1), ..., Xσ(m)) and then
introduce Alt(T ) := 1/m!

∑
σ σ∗T . We can then define

ω ∧ ω′ :=
(k + l)!

k!l!
Alt(ω ⊗ ω′)

Evaluated at each point, the latter definition reproduces the former.

Lemma 7.20. The wedge product satisfies bilinearity, associativity and graded
commutativity properties similar to those of Lemma 7.7. In addition to that, for
each g ∈ C∞(U) = Λ0

M(U), we have

(gω) ∧ ω′ = g · (ω ∧ ω′) = ω ∧ (gω′). �
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Example 7.21. Let ϕ : U
∼→ Ω be a chart of a manifold of dimension n. Then for

each I ∈ 〈n〉k we can take dϕ∧I = dϕi1 ∧ ... ∧ dϕik ∈ ⊗kT ∗(U). If I is ordered,
meaning 1 ≤ i1 < ... < ik ≤ n, then for any other ordered J ∈ 〈n〉k ,

dϕ∧I(eϕ[J ]) = dϕi1 ∧ ... ∧ dϕik (eϕj1
, ..., eϕjk

) = δIJ ;

Because of this, by repeating the same arguments as around Proposition 7.12, any
ω ∈ ΛkM(U) can be uniquely written as

ω =
∑
J ,<

ω(eϕ[J ])dϕ∧J

where in the sum, we only take ordered multi-indices. If we want, we can also
write it as

ω =
1

k!

∑
j1,...,jk

ω(eϕj1
, ..., eϕjk

)dϕj1 ∧ ... ∧ dϕjk .

In short, the k-forms on a chart are expressions
∑
J fJ dϕ

∧J with fJ ∈ C∞(U).

We can in particular write U = Ω and ϕ = id. Then, the differential k-forms on Ω

are simply the expressions
∑
J fJ dx

∧J with fJ smooth on Ω.

Corollary 7.22. Let ω : p 7→ ωp ∈ ∧kT ∗pM be a family of k-forms. Then it is
smooth iff for each p ∈ M there exists a chart (U,ϕ) containing p such that
ω|U =

∑
J fJ dϕ

∧J with fJ smooth on U.
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Pullback

Let F : M → N be a smooth map. Each differential k-form ω on N is in particular
a k-tensor, so we can consider its pullback F ∗ω ≡ F ∗(ω). To remind, for each
p ∈ M,

F ∗(ω)p((X1)p, ..., (Xk)p) := ωF (p)(F∗(p)(X1)p, ..., F∗(p)(Xk)p).

Here, (Xi )p ∈ TpM and F∗(p) : TpM → TF (p)N is the pushforward map.

Proposition 7.23. In the situation above, one has F ∗G∗ = (G ◦ F )∗, and

1. For each f ∈ C∞(N), F ∗df = d(f ◦ F ),

2. The pullback F ∗ω is a differential k-form on M for any ω ∈ ΛkN(N),

3. The pullback operation is linear is compatible with multiplication of forms by
functions:

F ∗(f ω + gω′) = F ∗(f ) · F ∗ω + F ∗(g) · F ∗ω′.

More generally, for any two differential forms ω1, ω2 on N, one has
F ∗(ω1 ∧ ω2) = F ∗ω1 ∧ F ∗ω2.

Proof. Proposition 6.23 ensures smoothness and Lemma 7.10 checks
alternation-related properties at each point. �
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Example 7.24. Let us consider a map F : Ω→ Θ. Denote (x1, ..., xn) the
coordinates in Ω and (y1, ..., ym) the coordinates in Θ. If we write
F (x) = (F 1(x), ..., Fm(x)), then y i ◦ F = F i , and so F ∗(dy i ) = d(y i ◦ F ) = dF i .

We already computed that at p = (x1, ..., xn), one has dF ip =
∑ ∂F i

∂x j
(p)dx jp, or

simply dF i =
∑

j ∂x j F
i · dx j . For each I ∈ 〈m〉k , we thus get

F ∗(dy∧I) = dF∧I = dF i1 ∧ ... ∧ dF ik

=
∑
j1,...,jk

∂F i1

∂x ji
· ... ·

∂F ik

∂x jk
dx j1 ∧ ... ∧ dx jk

=
∑
J∈〈n〉k

J(F )IJ dx
∧J , J(F )IJ =

∂F i1

∂x ji
· ... ·

∂F ik

∂x jk

As a consequence, given any ω =
∑
I,< ωIdy

⊗I with ωI smooth functions on Θ

(matrix k-tensors attached to each point of Θ), we have

F ∗ω =
∑
J∈〈n〉k

∑
I∈〈m〉k ,<

F ∗(ωI) · J(F )IJ · dx
∧J .

Note that while the I-sum is over the ordered indices, the J -sum is not.
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One particular case is when F : Ω→ Ω and we consider the top differential form
dx1 ∧ ... ∧ dxn. Lemma 7.14 implies that

F ∗(dx1 ∧ ... ∧ dxn) = det J(F ) · dx1 ∧ ... ∧ dxn,

where at each p ∈ Ω, det J(F )(p) is the determinant of the Jacobian matrix
J(F )ij (p).
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Subsection 3

De Rham differential
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The assignment f 7→ df is a linear map d : Λ0
M(U) = C∞M (U)→ Λ1

M(U). One of the
reasons for interest in differential forms is that they usefully extend the differential
map.

Theorem 7.25. Let M be a smooth manifold. For each U ∈ OpM and k ≥ 0,
there is a map

d ≡ d(k) : ΛkM(U)→ Λk+1
M (U), ω 7→ dω ≡ d(ω) ≡ dk(ω),

called the de Rham differential, that satisfies the following:

1. d0(f ) = df .

2. Each d(k) is linear and d2 = d(k+1) ◦ d(k) = 0.

3. For ω ∈ ΛkM(U), η ∈ ΛlM(U), the differential satisfies the graded Leibniz rule

d(k+l)(ω ∧ η) = d(k)(ω) ∧ η + (−1)kω ∧ d(l)(η).

4. For each open subset V ⊂ U we have (dω)|V = d(ω|V ).

Subject to these conditions, d is furthermore unique.

In particular, if (U,ϕ) is a chart and ω =
∑
αIdϕ

∧I with αI smooth, then
dω =

∑
dαI ∧ dϕ∧I .
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Remark 7.26. The condition 4. can be reformulated, as usual, via the
requirement that the following diagram commutes:

ΛkM(U)
d- Λk+1

M (U)

ΛkM(V )

|V ?
d- Λk+1

M (V )

|V?

It is in fact a non-condition, implied by the other requirements 1.− 3., but I find
it easier to include it explicitly. It suggests that just like for the differential, the
value dωp only depends on a small neighbourhood of p.

As I tried to show above, it is custom to suppress the indices of the differentials,
and write

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

The formula for d in a chart is similar for each k-form, which explains such an
ambiguity in notation.

Let us convince ourselves that the theorem is true by computing some examples.
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De Rham differential on Rn

Example 7.27. Take M = I ⊂ R. Then the only interesting operation is f 7→ df ,
dft = f ′(t)dt. As we know there are no 2-forms here, so d2f = 0 always.

Example 7.28. Take M = Ω ⊂ R2. Then Λ1(Ω) is C∞-spanned by dx, dy , and
Λ2(Ω) – by dx ∧ dy . This means that any 1-form is written as η = Adx + Bdy

and any 2-form is ω = Cdx ∧ dy where A,B, C ∈ C∞(Ω).

We know that for f ∈ C∞(Ω), df = ∂x f dx + ∂y f dy . Thus dA = ∂xAdx + ∂yAdy

and similarly for B. We compute

dη = d(Adx + Bdy) = dA ∧ dx + dB ∧ dy,

and since dx ∧ dx = dy ∧ dy = 0 we only care about ∂yAdy and ∂xBdx . We
continue

dη = ∂yAdy ∧ dx + ∂xB dx ∧ dy = (∂xB − ∂yA)dx ∧ dy.

Now, if η = df then A = ∂x f and B = ∂y f , and thus

∂xB − ∂yA = ∂x∂y f − ∂y∂x f = 0,

meaning d2f = 0. Finally, for dimension reasons, dω is always zero.
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Example 7.29. Take M = Ω ⊂ R3. Then

1. Λ1(Ω) is C∞-spanned by dx, dy, dz ,

2. Λ2(Ω) – by dx ∧ dy , dx ∧ dz , dy ∧ dz ,
3. Λ3(Ω) – by dx ∧ dy ∧ dz .

As before, df = ∂x f dx + ∂y f dy + ∂z f dz . Now, let η = Adx + Bdy + Cdz . We are
to compute dη = dA ∧ dx + dB ∧ dy + dC ∧ dz . We find:

dη = (∂xAdx + ∂yAdy + ∂zAdz) ∧ dx + (∂xB dx + ∂yB dy + ∂zB dz) ∧ dy
+ (∂xC dx + ∂yC dy + ∂zC dz) ∧ dz
= (∂yAdy + ∂zAdz) ∧ dx + (∂xB dx + ∂zB dz) ∧ dy + (∂xC dx + ∂yC dy) ∧ dz
= (∂xB − ∂yA)dx ∧ dy + (∂xC − ∂zA)dx ∧ dz + (∂yC − ∂zB)dy ∧ dz.

Perhaps some of you are familiar with the notion of curl. If we consider the vector
field F = A∂x + B∂y + C∂z , then its curl, denoted ∇× F , is given by

∇× F = (∂yC − ∂zB) ∂x + (∂zA− ∂xC) ∂y + (∂xB − ∂yA)∂z .

Thus the coefficients of dη are the same, up to a sign and order, as the coefficients
of ∇× F . This is not an artefact, and there are ways to make this connection
precise.
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We continue by computing dω for ω = Pdx ∧ dy +Qdx ∧ dz + Rdy ∧ dz :

dω = dP ∧ dx ∧ dy + dQ ∧ dx ∧ dz + dR ∧ dy ∧ dz
= ∂zP dz ∧ dx ∧ dy + ∂yQdy ∧ dx ∧ dz + ∂xRdx ∧ dy ∧ dz
= (∂xR − ∂yQ+ ∂zP )dx ∧ dy ∧ dz.

Now let us plug in ω = dη:

d2η = (∂x∂yC−∂x∂zB − ∂y∂xC + ∂y∂zA

+ ∂z∂xB−∂z∂yA)dx ∧ dy ∧ dz
= 0.

If we have a vector field V = V 1∂x + V 2∂y + V 3∂z , then its divergence is defined as
div(V ) = ∂xV 1 + ∂yV 2 + ∂zV 3. Taking into account signs and orders, the identity
d2η = 0 can be written as div(∇× F ) = 0.

Another observation that I leave to compute by hand is that d2f = 0. Note that
df = ∂x f dx + ∂x f dy + ∂x f dz has as coefficients the functions of ∇f , the gradient
of f . Thus ∇× (∇f ) = 0.
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De Rham differential, locally I

Proposition 7.30. The De Rham differential exists and is unique for any
Ω ⊂ Rn.

Proof. It takes a while, but everything is very natural.
1. Each ω ∈ Λk(Ω) uniquely decomposes as

ω =
∑
I,<

ωIdx
∧I , I = (i1, ..., ik), 1 ≤ i1 < ... < ik ≤ n.

This can be read as sums of products of 0-forms (functions) ωI and k-forms
dx∧I . For each dx i1 ∧ ... ∧ dx ik , since dx j = d(x j ), d2 = 0 and Leibniz rule,
we get d(dx i1 ∧ ... ∧ dx ik ) = 0. The same Leibniz rule insists that if d exists,
it must work as f 7→ df and

dω =
∑
I,<

dωI ∧ dx∧I

where dωI(X) = X(ωI) as usual. This covers the uniqueness part, but we
need to work out that d defined via the formula above indeed satisfies 1.− 4.

2. The assignment ω =
∑
I,< ωIdx

∧I 7→
∑
I,< dωI ∧ dx∧I = dω is R-linear: we

use that f 7→ df is R-linear together with the fact that

ω =
∑
I,<

ωIdx
∧I , ω′ =

∑
I,<

ω′Idx
∧I , aω + bω′ =

∑
I,<

(aωI + bω′I)dx∧I .
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De Rham differential, locally II

3. If we have a form A = αdx∧I with I ordered, then the definition above means
that dA = dα ∧ dx∧I . What about arbitrary I?
If I has a repeating index, then A = αdx∧I = 0, and dα∧ dx∧I = dα∧ 0 = 0.

If I has no repeating indices, then there is unique ordered J and a
permutation σ ∈ Σk taking I to J , so that

A = αdx∧I = (−1)σαdx∧J

the latter is a presentation in the basis, so by definition above,

dA = d((−1)σα)∧dx∧J = (−1)σdα∧dx∧J = dα∧((−1)σdx∧J ) = dα∧dx∧I .

The conclusion is that for any sum A =
∑
I AIdx

∧I (not necessarily over
ordered multi-indices I), we have dA =

∑
I dAI ∧ dx∧I .
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De Rham differential, locally III

4. Let us now prove that d2 = 0. For ω =
∑
I,< ωIdx

∧I , we have

dω =
∑
j

∑
I,<

∂ωI
∂x j

dx j ∧ dx∧I

this double sum can be regarded as a sum over some range of
k + 1-multiindices (j, i1, ..., ik), not necessarily ordered. We previously
established that the formula for d does not care about that, so

d2ω =
∑
j

∑
I,<

d

(
∂ωI
∂x j

)
∧ dx j ∧ dx∧I

=
∑
j,l

∑
I,<

(
∂2ωI
∂x l∂x j

)
dx l ∧ dx j ∧ dx∧I

=
∑
j,l

∑
I,<

1

2

(
∂2ωI
∂x l∂x j

−
∂2ωI
∂x j∂x l

)
dx l ∧ dx j ∧ dx∧I = 0.

The following trick was applied here: present the sum as two times the sume
of half parts, relabel indices j ↔ l and use dx j ∧ dx l = −dx l ∧ dx j . The
commutativity of second-order derivatives then does the rest.
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De Rham differential, locally IV

5. We now prove the graded Leibniz rule. For functions f , g ∈ Λ0(Ω), we know
(PS5) that d(f g) = gdf + f dg. Let ω =

∑
I,< ωIdx

∧I , η =
∑
J ,< ηJ dx

∧J

where I is a k-multiindex and J is an l-multiindex. Then by Lemma 7.20,

ω ∧ η =
∑
I,<

∑
J ,<

(ωI · ηJ )dx∧I ∧ dx∧J .

Thus

d(ω ∧ η) =
∑
I,<

∑
J ,<

d(ωI · ηJ ) ∧ dx∧I ∧ dx∧J

=
∑
I,<

∑
J ,<

(ηJ dωI + ωIdηJ ) ∧ dx∧I ∧ dx∧J

=
∑
I,<

∑
J ,<

[(dωI ∧ dx∧I) ∧ (ηJ ∧ dx∧J )

+ (−1)k(ωI ∧ dx∧I) ∧ (dηJ ∧ dx∧J )]

= dω ∧ η + (−1)kω ∧ dη.
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De Rham differential, locally V
6. We have shown that for each open Ω ⊂ Rn, we have d : Λk(Ω)→ Λk+1(Ω)

satisfying 1.− 3. of Theorem 7.25, and that such a d is unique. Its formula,
for each ω ∈ Λk(Ω) and p ∈ Ω, is given by

(dω)p =
∑
I,<

(dωI)p ∧ dx∧Ip .

This expression, eventually, works by computing differentials of the
component functions ωI , and thus only depends on some small
neighbourhood of p. We thus have the property 4.: for each U ⊂ Ω, dω|U
coincides with d(ω|U) (here we use that U is also open in Rn). �

Lemma 7.31. Let Ω ∈ OpRn, Θ ∈ OpRm and F : Ω→ Θ smooth. Then for each
ω ∈ Λk(Θ), F ∗dω = d(F ∗ω).

Proof. For ω =
∑
ωIdy

∧I , denoting F = (F 1, ..., Fm), we have

F ∗dω = F ∗
(∑

dωI ∧ dy∧I
)

=
∑

d(ωI ◦ F ) ∧ dF∧I ,

d(F ∗ω) = d
∑

(ωI ◦ F ) ∧ dF∧I =
∑

d(ωI ◦ F ) ∧ dF∧I .

They are the same picture. �
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Proof of Theorem 7.25 I

We go through the steps that yield De Rham differential on a general manifold M:

1. For a chart ϕ : U
∼→ Ω and ω ∈ Λk(U), we define dω := ϕ∗(d((ϕ−1)∗ω)). In

terms of basis decomposition, observe that

ω =
∑
I,<

ωIdϕ
∧I , (ϕ−1)∗ω =

∑
I,<

((ϕ−1)∗ωI)dx∧I ,

d((ϕ−1)∗ω) =
∑
I,<

d((ϕ−1)∗ωI) ∧ dx∧I ,

ϕ∗(d((ϕ−1)∗ω)) =
∑
I,<

ϕ∗d((ϕ−1)∗ωI) ∧ dx∧I .

For the differentials of 0-forms a.k.a. functions we know that F ∗df = d(F ∗f ),
so ϕ∗d((ϕ−1)∗ωI) = d(ϕ∗(ϕ−1)∗ωI) = dωI . Thus

dω =
∑
I,<

dωI ∧ dϕ∧I .

We can repeat the argument for any W ⊂ U and ϕ|W , getting that
dω|W = d(ω|W ) =

∑
I,< dωI |W ∧ dϕ∧I |W .
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Proof of Theorem 7.25 II

2. A check using Lemma 7.31 shows that nothing depends on the choice of the
chart map ϕ:

ϕ∗(d((ϕ−1)∗ω)) = ψ∗(ψ−1)∗ϕ∗(d((ϕ−1)∗ω)) = ψ∗(ϕ ◦ ψ−1)∗(d((ϕ−1)∗ω))

= ψ∗d((ϕ ◦ ψ−1)∗(ϕ−1)∗ω) = ψ∗d((ψ−1)∗ϕ∗(ϕ−1)∗ω))

= ψ∗d((ψ−1)∗ω).

This whole check uses that ϕ ◦ ψ−1 is a map between opens in Euclidean
spaces.

3. Then we can verify all the properties 1.− 3. by passing back and forth
between U and Ω. In particular, for any linear combination

∑
αIdf

∧I , where
f i are arbitrary functions on U, we have d

∑
αIdf

∧I =
∑
dαI ∧ df ∧I .

Everything is similar for W ⊂ U, so we have 4..
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Proof of Theorem 7.25 III

4. To generalise to the whole manifold M, choose a cover by charts Ui . For each
Ui , we have that d exists and is unique. Given ω ∈ Λk(Ui ∪ Uj ), the
uniqueness implies that

d(ω|Ui )|Ui∩Uj = d(ω|Ui∩Uj ) = d(ω|Uj )|Ui∩Uj .

For this reason, given ω ∈ Λk(M), it is nautral to define dω to be the unique
k + 1-form such that dω|Ui = d(ω|Ui ). Sheaf property of forms will imply its
existence. The properties 1.− 3. are then verified on each Ui .

5. Finally, the same arguments can be issued for M replaced by V ∈ OpM, and
Ui by Ui ∩ V . The uniqueness of d implies that locally, it looks always like
d
∑
αIdf

∧I =
∑
dαI ∧ df ∧I , so we have 4. �

Lemma 7.32. Let F : M → N be smooth. Then for each ω ∈ Λk(N),
F ∗dω = d(F ∗ω).

Proof. True locally, use sheaves. �
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De Rham cohomology

The identity d2 = 0 implies that ker(d : Λk(M)→ Λk+1(M)) contains
im(d : Λk−1(M)→ Λk(M)).

Definition 7.33. Let M be a manifold.

1. A form ω ∈ Λk(M) is closed if dω = 0,

2. A form ω ∈ Λk(M) is exact if ω = dη, η ∈ Λk−1(M).

3. The k-th de Rham cohomology group HkdR(M) is defined as the quotient of the
set of all closed k-forms by the set of all exact k-forms: ω ∼ ω′ iff ω−ω′ = dη.

In other words, HkdR(M) =
ker(d :Λk (M)→Λk+1(M))

im(d :Λk−1(M)→Λk (M))
. Not only it is an abelian group, it

is a vector space. But what is it, really?

Proposition 7.34. (Poincaré’s lemma) For M = Rn, one has
H0
dR(Rn) ∼= R, H≥1

dR(Rn) = 0, meaning that any closed k ≥ 1 form is exact. More
generally, we can replace Rn by any contractible (for example, starlike) subset of
Rn.

It is not true that for an arbitrary open Ω ⊂ Rn we have the same statement. For
instance one can show that H1

dR(R2 \ 0) = R, with the closed but not exact form
given by 1

x2+y2 (xdy − ydx).
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Example 7.35. 1. For Sn, one has H0
dR(Sn) ∼= HndR(Sn) ∼= R and HkdR(Sn) = 0

otherwise. The closed-but-not-exact form giving nonzero Hn is the volume
form of the sphere, discussed in TD and further below.

2. For T, one has H0
dR(T) ∼= H2

dR(T) ∼= R, H1
dR(T) ∼= R2. Denoting

q : {(x, y)} = R2 → T the quotient map, one can show that there are two
1-forms ω1, ω2 on T such that q∗ω1 = dx, q∗ω2 = dy .

Since q is a local diffeomorphism, one can conclude that dω1 = dω2 = 0, but
these forms will not be exact. One then shows that
H1
dR(T) = Span([ω1], [ω2]), H2

dR(T) = Span([ω1 ∧ ω2]).

3. For real projective spaces, H0
dR(RPn) ∼= R, HndR(RPn) ∼= R if n is odd,

HndR(RPn) = 0 if n is even, and is zero otherwise.
The famous de Rham theorem constructs an isomorphism between de Rham
cohomology and singular cohomology of manifolds.
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Section 8

Orientation, integration, Stokes
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Orientation of R-vector spaces

Let V be a R-vector space of dimension n.

When n = 2, we have an intuitive notion of understanding of its orientation.
Envisioning V as a plane, we can speak of “clockwise” or “counterclockwise”
orientation.

When n = 3, we also have an intuitive notion of orientation. If we fix a plane
H ⊂ V , we can orient it as before, say counterclockwise. Then the question will be
where to point the orthogonal direction, upstairs or downstairs. Or, alternatively,
we could fix the orthogonal direction, and play with the orientation of H. This
produces two choices, left-handed and right-handed.

In general, we can handle orientation using linear transformations.

251



Source: wikipedia
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We recall from PS1 that GLn(R) has two connected components, characterised by
the sign of the determinant. The positive determinant component shall be denoted
GL+

n (R). Below, we also work with ordered bases of V , that we can understand as
tuples (e1, ..., en) ∈ V n.

Definition 8.1. Two ordered bases (e1, ..., en) and (ε1, ..., εn) of V define the
same orientation if the linear map F defined as F (ei ) = εi has positive
determinant. This is seen to be an equivalence relation.

An orientation of V is an equivalence class of ordered bases, with respect to the
relation described above.

Given any two ordered bases ei and εi , the map F (ei ) = εi is always invertible, so
its determinant is either positive or negative. Thus there are two orientations
possible on each V .
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Lemma 8.2. Let ω ∈ ΛnV ∗ be a nonzero n-form. Then ei and εi define the same
orientation iff ω(e1, ..., en) and ω(ε1, ..., εn) are of the same sign.

Proof. Lemma 7.14 implies that for any linear F : V → V , F ∗ω = detF · ω. For
F (ei ) = εi , we note that

ω(ε1, ..., εn) = ω(F (e1), ..., F (en)) = F ∗ω(e1, ..., en) = detF · ω(e1, ..., en).

We then conclude since detF > 0 for equivalent bases. �

Consequently, we see that choosing an orientation is the same as choosing a
nonzero ω ∈ ΛnV ∗. Indeed, we can then consider all the bases e1, ..., en such that
ω(e1, ..., en) > 0.

Differently put, given a basis e1, ..., en, we can consider the dual basis f 1, ..., f n.
The form ω = f 1 ∧ ... ∧ f n will then yield positive values on all bases of the same
orientation as ei , and ω = −f 1 ∧ ...∧ f n will correspond to the opposite orientation.

Multiplying these two forms by a positive number does not change the result.
Conclusion: orientations on V correspond to connected components of
ΛnV ∗ \ 0 ∼= R \ 0.
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Orientation of manifolds

In the context of manifolds, we are met with the issue of variety. A differential
form on M assigns a linear n-form at each point of M, and we could try saying
that perhaps we simply require that all these forms are “of the same sign”. But in
any case we would perhaps like to have some other characterisation of orientation.

First, we generalise the linear setup to opens in Rn. Let F : Ω
∼→ Θ be a

diffeomorphism between two such opens.

Definition 8.3. F is called orientation-preserving if det J(F ), the determinant of
the Jacobian of F , is positive at each point of Ω. Otherwise F is called
orientation-reversing.

Here, we use the tangent space map F∗(p) : TpΩ→ TF (p)Θ to generalise our idea
of orientation.
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Example 8.4. For Ω = {(x, y)|x > 0, y > 0}, we can consider the diffeomorphism
F : (x, y) 7→ (x2, y2). We see that

F∗ :
∂

∂x

∣∣∣∣∣
p

,
∂

∂y

∣∣∣∣∣
p

7→ 2x
∂

∂x

∣∣∣∣∣
F (p)

, 2y
∂

∂y

∣∣∣∣∣
F (p)

.

Since x, y 6= 0 we have that the resulting tangent vectors are a basis. If we identify
each TqΩ with R2, v1∂x |q + v2∂y |q 7→ (v1, v2), then the two bases written above
become (1, 0), (0, 1) and (2x, 0), (0, 2y) and they define the same orientation.

Considering G(x, y) = (y2, x2) will, on the other hand, reverse the orientation of
tangent spaces.

Many authors further develop a natural generalisation of an ordered basis to this
context: they consider ordered families of nowhere vanishing vector fields. We
shall rather focus on forms.

Lemma 8.5. Let F : Ω
∼→ Θ be an orientation-preserving diffeomorphism of

opens in Rn = (x1, ..., xn). Denoting ω = dx1 ∧ ... ∧ dxn ∈ Λn(Θ), we have
F ∗ω = f · dx1 ∧ ... ∧ dxn ∈ Λn(Ω), where f is a positive smooth function on Ω.

Proof. F ∗(dx1 ∧ ... ∧ dxn) = det J(F ) · dx1 ∧ ... ∧ dxn as per Example 7.24. �
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Specifying a form ω = f dx1 ∧ ...dxn on Ω with f > 0 provides a way to decide, at
each p ∈ Ω, which basis e1, ..., en of TpΩ is positively oriented: one simply requires
that ωp(e1, ..., en) > 0.

Definition 8.6. Let M be a smooth manifold. Two charts (U,ϕ) and (V, ψ) are
said to be orientation compatible if the map ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) is
orientation preserving (note that the same is automatically true for its inverse).

M is called orientable if it admits a cover by charts (Ui , ϕi ) such that each pair
Ui , Uj is orientation-compatible.

I reproduce a familiar picture, but now with some orientations in it.
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ϕ

ϕ−1 ψ−1

ψ

M

U
V

Rn

ψ ◦ ϕ−1

Rn

Ω Θ
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Proposition 8.7. Let M is a (paracompact) manifold of dimension n. Then M is
orientable iff there exists a nowhere zero ω ∈ Λn(M), called the volume form of M.

The nowhere zero condition means that for each p ∈ M, the map ωp : TpMn → R
is nonzero.

Proof.

1. Assume such a form ω exists. Choose an atlas ϕi : Ui
∼→ Ωi . We know that ω

restricted to each connected component of Ui looks like f dϕ1
i ∧ ... ∧ dϕ

n
i , with

f either strictly positive or negative. If f > 0, do nothing, if f < 0, replace ϕ1
i

on that component by −ϕ1
i .

2. Now, for any Ui ∩ Uj , we have f dϕ1
i ∧ ... ∧ dϕ

n
i = gdϕ1

j ∧ ... ∧ dϕ
n
j with

f , g > 0. Note that because ϕi is a diffeomorphism, we can write
f dϕ1

i ∧ ... ∧ dϕ
n
i = ϕ∗i ((f ◦ ϕ−1

i ) · dx1 ∧ ... ∧ dxn). We thus get

ϕ∗i ((f ◦ ϕ−1
i ) · dx1 ∧ ... ∧ dxn) = ϕ∗j ((g ◦ ϕ−1

j ) · dx1 ∧ ... ∧ dxn),

and, denoting by F = ϕj ◦ ϕ−1
i , we get

(f ◦ ϕ−1
i ) · dx1 ∧ ... ∧ dxn = F ∗((g ◦ ϕ−1

j ) · dx1 ∧ ... ∧ dxn)

= det J(F ) · F ∗(g ◦ ϕ−1
j ) · dx1 ∧ ... ∧ dxn.

The pullbacks do not change positivity of functions, so we must have
det J(F ) > 0.
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3. Suppose we have an atlas ϕi : Ui
∼→ Ωi of orientation-compatible charts. We

can take, on each Ui , the form ωi = dϕ1
i ∧ ... ∧ dϕ

n
i . By definition, this form

satisfies
ωi (e

ϕi
1 , ..., e

ϕi
n ) = 1,

where eϕik are the standard basis vector fields. Using the chart transition
arguments, one can show that on Ui ∩ Uj ,

ωi (e
ϕj
1 , ..., e

ϕj
n ) = det J(ϕi ◦ ϕ−1

j ) > 0

for each Uj that intersects Ui .
4. The abstract topological nonsense implies the existence of a partition of

unity: there is a set of functions {pi}, pi ∈ C∞(M) such that
4.1 pi (x) ∈ [0, 1] for all x ∈ M and all i,
4.2 supp pi ⊂ Ui ,
4.3 the set {supp pi} is locally finite: for each x ∈ M there is an open U 3 x that

intersects only with a finite number of supp pi ,
4.4

∑
i pi (x) = 1 and is a sum over a finite number of terms for all x ∈ M.
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5. One then considers the forms piωi (they can be made into global forms on M
using the usual sheaf argument) and ω =

∑
piωi . One shows that this defines

an n-form on M. Moreover, if p ∈ Uj , then

ω(e
ϕj
1 , ..., e

ϕj
n )(p) =

∑
i

det J(ϕi ◦ ϕ−1
j )(p) > 0

where we sum, due to the properties of partitions of unity, only over a finite
number of terms. �

The existence of nowhere zero n-form can be taken as a definition of orientability.
Choosing a particular volume form ω amounts to choosing an orientation of M: by
the proof above, we can fix chart maps in such a way that ω|U = f dϕ1 ∧ ... ∧ dϕn
with f positive on the chart U.
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Example 8.8. The circle S1 is orientable. In terms of forms, we can take
η = x dy − y dx on R2 and consider its pullback ω = i∗η by the inclusion map
i : S1 → R2. To see that it is nowhere zero, note that if ωp = 0, this means that for
any v ∈ Tp(S1), we have ωp(v) = ηp(i∗(v)) = 0. However, as we know there is v
such that i∗v = x ∂y |p − y ∂x |p, and so

ηp(i∗(v)) = (x dyp − y dxp)(x ∂y |p − y ∂x |p) = x2 + y2|(x,y)=p = 1

since we are computing it at p in S1.

Example 8.9. The sphere S2 is also orientable. The following form is a natural
candidate for the volume form on S2. consider ω = dx ∧ dy ∧ dz and the Euler
vector field E = x∂x + y∂y + z∂z . Define then ιEω by setting
ιEω(X, Y ) = ω(E,X, Y ) for each pair of vector fields X, Y . This gives a 2-form
whose expression can be computed to be

ιEω = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy.

We then define ωE := i∗ιEω, where i is again the inclusion map S2 → R3. We need
to see why this is a nowhere zero 2-form.

262



At each point p ∈ R3 \ 0, it is possible to find two tangent vectors Vp,Wp such that

1. F∗Vp = F∗Wp = 0, where F is the map F (x, y , z) = x2 + y2 + z2,

2. The triple Ep, Vp,Wp satisfies ωp(Ep, Vp,Wp) > 0.

In geometric terms, we simply take an orthogonal complement to Ep (for the
standard Riemannian metric) and take a basis in it that gives a positive
orientation of R3.

Now, when p ∈ S2, then Vp,Wp belong to ker F∗ = im i∗, so they can be expressed
as Vp = i∗Ṽp,Wp = i∗W̃p for some Ṽp, W̃p ∈ TpS2. Thus

(ωE)p(Ṽp, W̃p) = ωp(Ep, Vp,Wp) > 0.

A similar argument in higher dimensions allows to show that Sn are orientable
manifolds.
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Example 8.10. Let us try to understand what happens on RP2. It is covered by
three charts:

ϕ0 : [x0 : x1 : x2] 7→ (u, v) = (x1/x0, x2/x0), U0 = {x0 6= 0}

ϕ1 : [x0 : x1 : x2] 7→ (a, b) = (x0/x1, x2/x1), U1 = {x1 6= 0}

ϕ2 : [x0 : x1 : x2] 7→ (z, t) = (x0/x2, x1/x2), U2 = {x2 6= 0}.

Let us compute the transition maps.

ϕ1 ◦ ϕ−1
0 (u, v) = ϕ1[1 : u : v ] = (1/u, v/u), det J(u, v) = −1/u3,

ϕ2 ◦ ϕ−1
0 (u, v) = ϕ2[1 : u : v ] = (1/v, u/v), det J(u, v) = 1/v3,

ϕ2 ◦ ϕ−1
1 (a, b) = ϕ2[a : 1 : b] = (a/b, 1/b), det J(a, b) = −1/b3.

This does not yet prove that RP2 is non-orientable, but it clearly shows the
problem with the atlas in question: the expressions for the Jacobian determinants
are functions of indeterminate sign.
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Let us reason by contradiction. If we ever had a nowhere vanishing ω ∈ Λ2(RP2),
under the chart map ϕ1 : U1

∼→ R2, we should have ω|U1
= ϕ∗1(f da ∧ db) where we

can assume f (a, b) > 0 for all a, b. Then

(ϕ1 ◦ ϕ−1
0 )∗(f da ∧ db)(u,v) = −

1

u3
f

(
1

u
,
v

u

)
du ∧ dv.

On the other hand, due to the commutative diagram

U0 ∩ U1

{(u, v)}
ϕ1 ◦ ϕ−1

0

-

ϕ−1
0 -

{(a, b)}

ϕ1
-

it should be equal to (ϕ−1
0 )∗(ω|U0

) on u 6= 0, which is a form g du ∧ dv where g is
of constant sign. However, from the above we see that g(u, v) > 0 for u < 0 and
g(u, v) < 0 for u > 0. Thus RP2 is non-orientable.

The same argument in fact works for any RP2k , which are all non-orientable
manifolds. On the other hand, one can also check that odd-dimensional RP2k+1

are in fact orientable.
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A geometric reason behind the non-orientability of RP2 is that the maps S2 → S2

that sends p to −p (antipodal point) reverses, in fact, the orientation of S2. We
then recall that RP2 is a quotient of S2 by this map.

More orientable examples: Tn, CPn, more generally, all complex manifolds, all Lie
groups. All symplectic manifolds.

Some non-orientable examples: Möbius strip, Klein bottle.

Note that orientability has nothing to do with embedding into orientable
manifolds: we can embed Möbius into R3 and Klein into R4 but that will not
make them orientable.
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Subsection 1

Integrating differential forms
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Let us first consider Rn. Let us say that U is an open domain of integration if U is
open, bounded and ∂U = U \ U has (Lebesgue) measure zero. This is entirely a
pedantic remark at this point, so if you do not remember measure theory in detail,
do not worry.

Such sets have two advantages:

1. Any continuous f defined on an open Ω containing U can be
Riemann-integrated over U.

2. Any compact subset K of Ω satisfies the following: there exists an open
domain of integration U such that K ⊂ U ⊂ U ⊂ Ω.

In particular, continuous functions of compact support can be integrated over its
support in Riemann or Lebesgue way. Denote

∫
U f dx

1...dxn the integral of f over
U. When supp f = K ⊂ U we will also write

∫
K f dx

1...dxn.

When K = [a1, b1]× ...× [an, bn], the famous Fubini theorem guarantees that∫
K
f dx1...dxn =

∫ b1

a1

dx1...

∫ bn

an

f dxn

and the integration over xi can be done in any order.
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Let Ω be open in Rn and U be an open domain of integration whose closure is
contained in Ω.

Definition 8.11. For ω = f dx1 ∧ ... ∧ dxn ∈ Λn(Ω), its integral over U is defined
as ∫

U
ω :=

∫
U
f dx1...dxn.

The following formula perhaps adds some naturality to this definition:

Lemma 8.12. Let F : Θ→ Ω be a diffeomorphism of two opens in Rn, and
V, V ⊂ Θ be an open, connected domain of integration such that F (V ) = U. Then
for ω ∈ Λn(Ω) ∫

V
F ∗ω = ±

∫
U
ω,

with the sign being negative iff F is orientation-reversing.

Proof. Writing for convenience x i for coordinates in Ω and y i for coordinates in
Θ, we note that the transformation formula
F ∗(f dx1 ∧ ... ∧ dxn) = det J(F ) · F ∗(f ) dy1 ∧ ... ∧ dyn looks almost like the change
of variable formula for the multiple integral, except that det J(F ) = ±| det J(F )|
depending on the properties of F . �
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Since integrals compute, among other things, volumes of subsets, due to Lemma
8.12, differential forms (and their integrals) are often called oriented volumes.

Let us now extend the integration of forms to manifolds. We shall only consider
ω ∈ Λn(M) such that suppω = {p |ωp 6= 0} is compact in M. Assume, first, that
K = suppω is entirely contained in a single chart ϕ : U

∼→ Ω. Then we define∫
U
ω :=

∫
ϕ(K)

(ϕ−1)∗ω.

The change of variables formula of Lemma 8.12 then yields:

Lemma 8.13. The integral
∫
U ω is independent of the choice of the chart map ϕ,

in the following sense: for another chart map ψ : U
∼→ Θ that is

orientation-compatible with ϕ, we have∫
ϕ(K)

(ϕ−1)∗ω =

∫
ψ(K)

(ψ−1)∗ω. �

The sign is problematic if we want to extend it to the whole manifold. For this
reason, integration is usually only defined for orientable M.
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We assume that M is oriented, with the choice of orientation given by a nowhere
vanishing form that we denote VolM . Let (Ui , ϕi ) be an orientation-compatible
atlas such that VolM |Ui = g dϕ1

i ∧ ...dϕ
n
i with g > 0.

Let pi be a partition of unity subordinate to the cover Ui . Again, this is a bunch
of positive smooth functions with supp pi ⊂ Ui and

∑
pi = 1, with the sum taken

over finite amount of i at each point. Note that for any compact K ⊂ M, the set
supp pi ∩K is an intersection of a closed and a compact, hence is a compact set
(tiny topology exercise) contained in Ui .

Definition 8.14. For ω ∈ Λn(M) with compact support K, we define∫
M
ω =

∑
i∈I

∫
Ui

pi · ω =
∑
i∈I

∫
ϕi (supp pi∩K)

(ϕ−1
i )∗(pi · ω|Ui ).

Here, I denotes any finite set of indices i1, ..., ik such that K ⊂ Ui1 ∪ ... ∪ Uik .

Obviously, one has to check that

1. this sum is well-defined and does not depend on the finite cover of K by Ui ,

2. any other choice of an atlas and a partition of unity gives the same result.

I will not go into detail but these claims are indeed true.
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Of course, in practice such a definition is useless for computation, even though we
can show that the integral satisfies natural properties like linearity. Still, it allows
to prove the following:

Proposition 8.15. (integrals via parametrisations) Let (M,VolM) be an oriented
n-manifold and ω a compactly supported form on M. Assume that D1, ..., Dk are
open domains of integration in Rn and we are given smooth maps Fi : Di → M

(meaning that Fi can be extended to a smooth map from some open containing Di
such that

1. Wi = Fi (Di ) is open in M and Fi : Di → Wi is an orientation-preserving
diffeomoprihsm, meaning that F ∗i (VolM) is an n-form on Di equal to
f dx1 ∧ ... ∧ dxn with f > 0,

2. Wi ∩Wj = ∅ for i 6= j,

3. suppω ⊂ W1 ∪ ... ∪Wk .

Then
∫
M ω =

∑k
i=1

∫
Di
F ∗i ω.

It is of course possible to extend this theorem to orientation-reversing Fi , by
putting minus signs where needed.
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Example 8.16. The map F : [0, 1]→ S1 that sends α to cosα, sinα provides a
parametrisation of S1 in the sense of the previous proposition. We can thus write
that

∫
S1 ω =

∫ 1
0 F

∗ω, something that you have already used many times in your
life.

Similarly, we can use the map F : [0, π]× [0, 2π]→ S2,
F (θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) to pull back the volume form ωE
constructed earlier in Example 8.9. The result turns out to be
F ∗ωE = sin θ dθ ∧ dϕ and so we get the standard computation∫

S2
ω =

∫ π

0
dθ sin θ

∫ 2π

0
dϕ = 4π.
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Subsection 2

Manifolds with boundary and Stokes’ theorem
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There exists an interesting relation between integration and de Rham differential,
but to formulate it, it would be useful to generalise our context somewhat, and
introduce the notion of manifolds with boundary.

Smooth manifolds are modelled on the opens in Rn that we consider to be without
boundary. The canonical example of a set with boundary is
Hn := {(x1, ..., xn) | xn ≥ 0}:

Hn

Its boundary ∂Hn is the set {(x1, ..., xn) | xn = 0}. The complement of ∂Hn is the
interior IntHn = Hn \ ∂Hn = {xn > 0}.
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Let U ∈ OpHn. We would like to say what it means for f : U → R be smooth.
First, if U is also open in Rn, which is equivalent to saying U ∩ ∂Hn = ∅, then we
can simply state that f is smooth in the ordinary sense.

If U ∩ ∂Hn 6= ∅, we need to handle the boundary points. As suggested by our
previous constructions, we say that f : U → R is smooth if there exists V ∈ OpRn,
U ⊂ V , and g ∈ C∞(V ) such that g|U = f . It turns out that one can rephrase this
condition: f should be continuous on U, smooth on IntHn ∩ U, and all the partial
derivatives of f |IntHn∩U should admit a continuous extension to U.

We denote C∞Hn (U) to be the set of all smooth functions on U ∈ opHn in the above
sense. One checks that given U ∈ OpHn, the assignment U 7→ C∞Hn (U) gives a
R-space structure on Hn.

Definition 8.17. A smooth manifold with boundary of dimension n is a
(paracompact, Hausdorff) topological space M together with a sheaf of R-algebras
denoted C∞M such that there exists a cover M = ∪Ui and R-space isomorphisms ϕi
between (Ui , C

∞
M |Ui ) and either (Hn, C∞Hn ) or (Rn, C∞Rn ).

It is possible to replace Hn by its opens but I will not go into such detail.
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For a manifold with boundary M, one says that p is the interior point if its image
under some chart map ϕ belongs to IntHn, of if p belongs to a chart isomorphic to
Rn. It is said to be a boundary point if ϕ(p) ∈ ∂Hn. One can show that this
definition does not depend on the choice of ϕ, and that an interior point cannot be
a boundary point and vice versa.

We denote IntM the set of interior points and ∂M the set of boundary points of
M. As we remarked, IntM ∩ ∂M = ∅.

Example 8.18. The canonical example of a manifold with boundary is of course
the closed unit ball Dn ⊂ Rn. One has to do some straightening here to flatten its
boundary ∂Dn, which happens to be Sn−1.

Proposition 8.19. Let M be a manifold with boundary. Then

1. IntM is a smooth manifold without boundary of dimension n,

2. ∂M is a smooth manifold without boundary of dimension n − 1,

3. The inclusion i : ∂M ↪→ M is smooth: it is an R-space map, or, equivalently,
it takes any f ∈ C∞M (M) to i∗f ∈ C∞∂M(∂M).

The way ∂M gets charts is similar to slice charts for submanifolds: we find a chart
(U,ϕ) that intersects the boundary and consider (U ∩ ∂M,ϕ|U∩∂M). With our
definition of smooth functions on Hn, it is clear that their restriction to ∂Hn is also
smooth. Sheaves allow to globalise to statements about M and ∂M.
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Most notions can be defined verbatim in the context of manifolds with boundary.
It is worth remarking the following subtlety: for p ∈ ∂Hn, the tangent space TpHn,
defined again as p-derivations of C∞(Hn), will be spanned by ∂1|p, ..., ∂n|p (we can
differentiate f ∈ C∞(Hn) in the n-th direction even at the boundary).

On the other hand, Tp∂Hn = Span(∂1|p, ..., ∂n−1|p). Similarly, differential forms on
Hn are wedge products of dx1, ..., dxn times a smooth function on Hn, whereas on
∂Hn, we will only have dx1, ..., dxn−1. The pull-back of forms along i : ∂Hn ↪→ Hn
acts as i∗(dxn) = 0 and preserves the remaining dx j .

Other than this remark we can repeat everything that was said about vector fields,
tensor fields and differential forms in the context of manifolds with boundary.
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An orientation of a manifold with boundary M consists, again, in specifying a
nowhere vanishing top degree form VolM . It then turns out that if such a form
exists, then ∂M is also orientable. There are various conventions on what
orientation of ∂M one should take.

A convention that is employed to orient ∂Hn as a boundary of Hn is as follows:(
∂
∂x1 , ...,

∂
∂xn−1

)
is positively oriented on ∂Hn iff

(
− ∂
∂xn
, ∂
∂x1 , ...,

∂
∂xn−1

)
is positively

oriented for the standard form dx1 ∧ ... ∧ dxn on Hn.

Thus we choose (−1)ndx1 ∧ ... ∧ dxn−1 as the volume form on ∂Hn for what is
called the induced orientation of the boundary. This can be done similarly for
M, ∂M by passing to charts: if ϕ : U

∼→ Hn is a chart in which the volume form
VolM looks like f dϕ1 ∧ ... ∧ dϕn, then we require that Vol∂M looks like
(−1)ng dϕ1 ∧ ... ∧ dϕn−1, where g > 0 on U ∩ ∂M.

The idea here is that we orient the boundary by adding a vector (field) pointing in
the outward direction as our first basis element. This corresponds to how we
oriented S1 and S2 for example.

These remarks are sufficient to state the Stokes theorem.
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Stokes theorem

Theorem 8.20. Let M be an n-manifold with boundary ∂M and ω be a
compactly supported n − 1 form on M. Then, denoting i : ∂M → M the smooth
inclusion map, we have ∫

M
dω =

∫
∂M
i∗ω.

Corollary 8.21. Let M be a compact manifold without boundary, then for any
n − 1 form ω, we have

∫
M dω = 0. In other words, integration over M induces a

linear map ∫
M

: HndR(M)→ R

since Vol1 = Vol2 +dω means that
∫
M Vol1 =

∫
M Vol2.

Even this corollary is quite nontrivial: changing a form by a differential of another
form is a significant perturbation, but the integral does not witness it!
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The proof of Stokes theorem even in this generality is surprisingly not
complicated. A good write-up is [4, Theorem 16.11], and let us reproduce the
computational part of their argument.

By doing the magic of charts and partitions of unity, everything gets reduced to
the case of a single chart. It can be of the form ϕ : U

∼→ Hn or ψ : V
∼→ Rn.

The case of ϕ is treated as follows. Any compactly supported n − 1 form ω can be
written as

ω =
∑
i

fi dx
1 ∧ ... ∧ d̂x i ∧ ... ∧ dxn

where hats mean omission, and fi are supported in the interior of
[−R,R]n−1 × [0, R] for some R > 0 (the [0, R]-interval corresponds to the
coordinate xn). One then computes as usual, that

dω =
∑
i

(−1)i−1 ∂fi

∂x i
dx1 ∧ ... ∧ dx i ∧ ... ∧ dxn.

The integral over A = [−R,R]n−1 × [0, R] can be written as a repeated
1−dimensional integral, so∫

A
dω =

∑
i

(−1)i−1

∫ R

0

∫ R

−R
...

∫ R

−R

∂fi

∂x i
dx1...dxn.
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Thanks to Fubini theorem, we can compute in any order we want, so why not
integrate ∂fi

∂x i
over x i? Thanks to the fundamental theorem of integration the

result will be equal, for i = 1, ..., n− 1, to fi (x1, ..., R, ..., xn)− fi (x1, ...,−R, ..., xn).

Since we choose R large enough so that supp fi is contained in the interior of A,
both terms in this difference vanish. Similarly, integrating in xn will give the
difference fn(x1, ..., xn−1, R)− fi (x1, ..., xn−1, 0). Only one term here is nonzero,
and that is −fn(x1, ..., xn−1, 0). Conclusion:∫

A
dω = (−1)n

∫ R

−R
...

∫ R

−R
fn(x1, ..., xn−1, 0)dx1...dxn−1

=

∫
A∩∂Hn

fn(x1, ..., xn−1, 0)(−1)ndx1 ∧ ... ∧ dxn−1

If we were to use x1, ..., xn−1 as coordinates for ∂Hn, then
i∗ω = fn(−, ...,−, 0) dx1 ∧ ... ∧ dxn−1 so this is almost the expression we have in
the integral above. The extra sign is exactly from the orientation discussion we
had before, so in terms of how we defined the integration of forms, we indeed have∫
Hn dω =

∫
∂Hn i

∗ω. Funnily enough, Stokes theorem simply reduces to integrating
partial derivatives.

The case of the chart ψ : V
∼→ Rn requires similar calculus, with everything being

zero since there is no boundary.
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Many famous “physics formulas” are in fact corollaries of the Stokes theorem,
when suitably interpreted.

Example 8.22. In R2, we recall that for η = P dx +Qdy , we have
dη =

(
∂Q
∂x
− ∂P

∂y

)
dx ∧ dy . We can consider an open subset Ω with the property

that Ω is a smooth manifold with boundary (for example, take Ω = D2). Then, by
pulling back η and dη to Ω∫

∂Ω
P dx +Qdy =

∫
Ω

(
∂Q

∂x
−
∂P

∂y

)
dx ∧ dy,

where we suppressed all the pullbacks from the notation. This is Green’s theorem.
The orientation on Ω is the one induced from R2, and the induced orientation on
the boundary is “counter-clockwise”.
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I invite you to read up the rest of Green-like theorems as our version of Stokes
theorem. It must be noted that one can push to even greater generality, by
working with manifolds with corners.

This concludes our course. What a wild ride! I hope you appreciated at least some
of it.
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